
FCPP(1) FCPP(1)

NAME
fcpp − Fortran C Preprocessor

SYNOPSIS
fcpp [-Dname[=value]] [-Uname] [-F] [-C] [-Idirectory] [-V] [input-file[output-file]]

DESCRIPTION
fcpp is a modified C preprocessor designed to be used on Fortran code. It is a modified version ofcccp, the
C Compatible Compiler Preprocessor written by Paul Rubin and copyrighted by the Free Software Founda-
tion. Thispreprocessor provides all the functionality of the old style C preprocessor as well as#elif and the
macros; __LINE__, __DATE__, __FILE__, and __TIME__. In addition, it contains additional features for
Fortran code, and it has been ported to the VAX/VMS operating system in addition to other Unix platforms.

Command line options
-F The input file is Fortran. The preprocessor variable, LAN-

GUAGE_FORTRAN, is automatically defined.

-Dname[=value] The preprocessor variable,name, is set to value if value is specified,
and is set to 1 if novalueis specified.

-Uname The preprocessor variable,name, is undefined.

-C C comments are copied to the output file.

-V The version number offcpp is written to standard error.

input-file The file to be processed. If specified as a hyphen ("-") or if omitted,
then standard input is used.

output-file The output of processing. If specified as a hyphen ("-") or if omitted,
then standard output is used.

Directives
The following directives are processed: #define, #undef, #include, #ifdef, #if, #ifndef, #elif, #else, #endif,
#pragma, and #line. Their meaning is the same as incpp except for the special processing done in VMS for
#include.

Differences from cccp
fcpp has been modified as follows:

1. A Fortran mode switch (-F) has been added that controls the use of Fortran features.

2. Outputlines are continued if they exceed 72 characters when Fortran mode is on.

3. A number of changes have been made to portfcpp to VMS. In particular, the I/O infcpp has been
rewritten to work line by line rather than with single read’s and write’s. In version 2.4 of VAXC,
this was a necessity because the I/O system failed when large (>32K) read’s and write’s were
attempted.

4. Commandoption processing is case insensitive on VMS.

5. OnVAX/VMS, the first "/" in an included file name is converted to ":" to allow the use of logical
names.

6. OnVAX/VMS, SYS$LIBRARY: is searched for included files specified with angle brackets, "<>".

7. In Fortran mode, double quotes (") are ignored. Substitutions within double quotes are allowed.
However, single quotes are interpreted as string delimiters within Fortran statements, and no sub-
stitutions are allowed in the string. Single quotes are not specially processed within Fortran com-
ments, but there is a difficult bug which prevents fcpp from identifying a comment in the first line
of a file. Therefore, an unmatched single quote in the first line of a file which is a comment will
result in no preprocessing.

Macromolecular Modeling Local 1

FCPP(1) FCPP(1)

8. TheVAX version of the program has the preprocessor variable,vax, defined. TheVMS version
hasvax, VAX, vms, andVMSdefined. TheUnix version hasunixdefined.

9. If an error occurs handling an #include directive on VMS, the directive is written to the output file.
This gives the VAX C compiler another crack at it.

10. OnVMS, no #line directive is written out after an #include directive.

DIAGNOSTICS
Self-explanatory (hopefully!). Syntax errors give the line number for the bad line.

SEE ALSO
cpp(1), cc(1).

FILES
CAVEATS

Don’t put a single quote in a comment found in the first line of Fortran file.

ORIGIN
Paul Rubin and Free Software Foundation.
Modifications by Robert E. Bruccoleri
Bristol-Myers Squibb Pharmaceutical Research Institute

COPYLEFT
Copyright (C) 1986, Free Software Foundation, Inc.
See the beginning of the source file, cccp.c, for the full text of the License Agreement covering use and
copying of this program.

Macromolecular Modeling Local 2

MKPROT O(1) MKPROT O(1)

NAME
mkproto − Make prototypes for functions

SYNOPSIS
mkproto

[-n] [-s] [-p] [-E] [-i name] [-l int] [file] ...

DESCRIPTION
mkproto takes as input one or more C source code files, and produces as output (on the standard output
stream) a list of function prototypes (a la ANSI) for the external functions defined in the given source files.
This output, redirected to a file, is suitable for#include’ing in a C source file.

The function definitions in the original source may be either "old-style" (in which case appropriate proto-
types are generated for the functions) or "new-style" (in which the definition includes a prototype already).

A -n option causes the line number where each function was defined to be prepended to the prototype dec-
laration as a comment.

A -s option causes prototypes to be generated for functions declard "static" as well as extern functions.

A -p option causes the prototypes emitted to be only readable by ANSI compilers. Normally, the prototypes
are "macro-ized" so that compilers with__STDC__ not defined don’t see them.

A -E option causes all preprocessor statements in the to be emitted to the prototype file. If you use this
option, it is important that all your header files be idempotent, namely, that they can be reincluded multiple
times with the same effect as a single inclusion.

The -i name option is used to make the emitted prototype file idempotent. Thename is used to condition-
ally compile the prototype file as a whole, and therefore, the prototypes will only be seen once by the com-
piler. Try this option out to see the effect.

The -l int option controls the width of lines output bymkproto . After each variable in a functions proto-
type is output,mkproto checks to see if the current line length exceeds the internal variable,
breakafter. If it does, then a newline followed by appropriate indentation is output. Thus, this variable
doesn’t specify a hard line width, it specifies an approximate right margin. Only positive values are permit-
ted for this option. A value of 1 results in each variable having its own line.

If files are specified on the command line, then a comment specifying the file of origin is emitted before the
prototypes constructed from that file. If no files are given, then no comments are emitted and the C source
code is taken from the standard input stream.

BUGS
1) mkproto is easily confused by complicated declarations, such as

int ((*signal)())() { ...

or

struct foo { int x, y; } foofunc() { ...

2) Float types are not properly promoted in old style definitions, i.e.

int test(f) float f; { ...

should (because of the default type conversion rules) have prototype

int test(double f);

rather than the incorrect

int test(float f);

Macromolecular Modeling Local 1

MKPROT O(1) MKPROT O(1)

generated bymkproto .

3) Some programs may need to be run through the preprocessor before being run throughmkproto . The -n
option is unlikely to work as desired on the output of a preprocessor.

4) typedef’d types aren’t correctly promoted, e.g. for

typedef schar char; int foo(x) schar x; ...

mkproto incorrectly generates the prototypeint foo(schar x) rather than the (correct)int
foo(int x).

5) Functions named "inline" with no explicit type qualifiers are not recognized.

SEE ALSO
cc(1), lint(1)

AUTHORS
Eric R. Smith.
Robert E. Bruccoleri.

NOTE
There is no warranty for this program (as noted above, it’s guaranteed to break sometimes anyways!).
mkproto is in the public domain.

Macromolecular Modeling Local 2

WRAPGEN(1) WRAPGEN(1)

NAME
wrapgen − Wrapper generator for Fortran C interlanguage calls

SYNOPSIS
wrapgen

[-c] [-f] [-m] [-i input-file] [-o output-file] [-h header-file]

DESCRIPTION
wrapgen generates wrappers for C to Fortran and Fortran to C interlanguage calls.These wrappers are
designed to hide the machine dependencies inherent in interlanguage calls. Programs usingwrapgen can
then use C and Fortran in a portable way. wrapgen takes care of converting character string parameters and
call by value parameters.

Command line options
-c Write wrappers for procedures written in C

-f Write wrappers for subprograms written in Fortran

-m Writes multiple files. A separate file beginning with the prefixwr_ is
written for every wrapper. This feature is intended for building object
libraries where each wrapper is isolated into its own module. When this
option is specified, the-o output-fileoption is ignored.

-h header-file Specifies the header file which must be included into any source file
which calls the wrapped functions. This header file is written bywrap-
gen. See below for more information.

-i input-file Specifies the input file of prototypes which describe the functions for
which wrappers are to be generated. Defaults to standard input.

-o output-file Specifies the file where the wrapper procedures are written. This is a C
language source file that must be compiled and linked into the program
using the wrappers.

Usage
wrapgen generates wrappers for either Fortran or C procedures, depending on the choice of the-c or -f
option. Ineither case, the specifications for the wrappers in done using the same syntax, namely that of C
function prototypes. The syntax for the prototypes is as follows:

prototype ::= [data-type] {function-name} (arglist) ;

arglist ::= <empty> | void | arglist1

arglist1 ::= arg | arg , arglist1

arg ::= data-type[*] variable-name

data-type ::= int | float | double | char | void |
F77_INTEGER | F77_REAL | F77_DOUBLE |
F77_LOGICAL | F77_POINTER

Any number of wrappers may be specified in the input file.

There are three different types of variables; character, size, and scalar. Character variables are used to pass
character strings, and always specified as pointers tochar. Size variable are integers or F77_INTEGER’s,
not declared as pointers, which have the same variable name as the corresponding character string, except
that "_size" is appended to the end. Size variables are described in more detail below. Scalar variables are
integers, logicals, floats, double precision floats, and Fortran pointers. Fortran pointers are variables in

Macromolecular Modeling Local 1

WRAPGEN(1) WRAPGEN(1)

Fortran that are intended to hold addresses used in C code. All can be passed by pointers, and all scalar
variables except double precision floats can be passed by value.

The return type of any prototype should be limited tovoid, integers, logicals, single precision floats, and
integers big enough to hold pointers (F77_POINTER). Double precision floats are difficult to return, and
wrapgendoes not handle them.

A number of preprocessor variables must be defined for the wrappers to work. See theImplementation
section below for more information.

Wrappers for functions defined in Fortran
The key transformation thatwrapgen provides is the conversion of character strings in C usage to that
expected by Fortran subroutines. In Fortran, all character strings have a size associated with them. The
wrappers generated bywrapgen can either calculate this size usingstrlenor it can be provided by the pro-
grammer.wrapgen will choose based on whether a_sizevariable exists for the character string as specified
in the prototype. Such size variables are integers passed by value which have "_size" appended to the char-
acter string variable name.You must decide when writing the procedure which way a string is being
passed, and then this form must used throughout the code.

wrapgen will also transform parameters passed by value into parameters passed by reference. The wrap-
per’s copy of the parameter will be used to provide storage.The presence or absence of an asterisk ("*")
before the variable name in the prototype signifies that the C code expects a parameter to be passed by
value.

The header file produced by the-h option contains #define statements which rename the functions to their
wrapper form (the name specified in the prototype plus "_wrap"), and they also contain a function proto-
type for this wrapper so that no parameter promotions will be done. This is important for calling Fortran
subroutines which expect float parameters and for which the C call uses a call by value.

Procedure for Fortran defined subprograms
For each subroutine which is called from C, you must do the following:

1) Define a function prototype in C which specifies how your C code will call the subroutine. The order of
character strings and other parameters must match the Fortran code. You have the option of specifying size
variables for each of the character strings; these may be specified in any position, but must be consistently
used. Thenames must correspond to the character strings with the addition of "_size" to the name. If you
omit a size variable for a character string, then the wrapper will use strlen to get a value. Inthe Fortran
code, simply declare these variables as CHARACTER.

2) You can also declareint, float, F77_REAL, F77_INTEGER, F77_POINTER, and F77_LOGICALwithout
a pointer (call by value), and the wrapper will generate a pointer for you.

3) You must include the header that is produced by wrapgen in any file of C code where any Fortran sub-
routine is called.

4) You must define a "config.h" file for use by the wrapper code which defines the preprocessor variables
listed under "Implementation". Thewrapper code must be compiled and linked with your programs.

Example wrapper specification read bywrapgen:

void gtrmni (char *comlyn, int comlyn_size, int *comlenp,
char *keyst, int *valp, int def);

gtrmni is a subprogram which will search the string,comlyn, for a keyword, keyst, and if found, will convert
the following word into an integer and put the result into*valp. In addition, both the keyword and the fol-
lowing word will be deleted fromcomlyn. If not found, it fill copy def into *valp. A sample call to gtrmni
would look like:

#define MXCMSZ 2000
char comlyn[mxcmsz];
int comlen,unit;
gtrmni(comlyn,MXCMSZ,&comlen,"UNIT",&unit,-1);

Macromolecular Modeling Local 2

WRAPGEN(1) WRAPGEN(1)

Sincecomlynis modified, we must have both a maximum length (the size variable in the declaration,com-
lyn_size) and a current length,*comlenp. Since the keyword, *keyst, is readonly and would never contain a
null character, the use of strlen to get the length would make sense. Thus, no size variable appears in the
prototype. All other variables are declared as integers. Sincecomlenand unit can be changed, they are
passed by references.def is passed by value since it is a constant. The subroutine call itself is declaredvoid
because no value is returned.

Wrappers for functions defined in C
Again, the key transformation is for character strings. However, here Fortran provides all the necessary
information already; it is up to the programmer to decide if the C functions needs it. The pointer to the
character string is always provided, but the size is provided only if a size variable is included in the proto-
type.

The header file produced here contains #define statements which will rename the Fortran call to their _wrap
forms. Both upper and lower case name conversions are done, but any mixtures of upper and lower case
characters in a name are not supported.You must use a C preprocessor like fcpp with your Fortran code.

Procedure for C defined procedures
To use C functions from Fortran, you must do the following

1) Define C function prototypes that specify the parameters for your C function. All character strings and
other parameters must specified in the same order in the definition and in the Fortran call.

2) Decide for which character strings you will require the actual lengths as provided by Fortran. Declare
these as size variables, and place them wherever you like, although right after the character is recom-
mended.

3) Decide on any call by value variables. Any int, float, F77_INTEGER, F77_REAL, F77_LOGICALor
F77_POINTERvariable may be declared in the prototype without a pointer indication, and these will be
dereferenced before passing to your C function.

4) Include the header file produced bywrapgen in all Fortran code which calls these C functions. Since the
header file will increase the size of the subprogram name in a call, watch out that the limit of 19 continua-
tion lines is not exceeded.

5) You must define a "config.h" file for use by the wrapper code which defines the preprocessor variables
listed under "Implementation". The wrapper code must be compiled and linked with your programs.

Example wrapper specification read bywrapgen:
int get_vm (int len, char *callee, int callee_size)

get_vm is a subroutine that will return the address of newly allocated memory of length*len. If the call
fails, it will issue an error message containing the string pointed to bycallee which has a length of
callee_size. The Fortran call to this routine might look like

INTEGER SPACE,GET_VM,LEN
SPACE = GET_VM(LEN,"ALLHP")

The lenargument will be dereferenced when the C function is called.

Implementation
wrapgen is implemented usingyaccandlex for parsing the prototypes.The wrappers are generated using
a large number of preprocessor statements so that they can be conditionally compiled for each machine
type. A number of preprocessor variables are examined to create the wrappers:

APPEND_FOR Defined if Fortran entry points have an underscore appended to their
names.

vms Definedfor vms systems

Macromolecular Modeling Local 3

WRAPGEN(1) WRAPGEN(1)

ST_BY_EXTRA_LEN Defined for systems which pass character string lengths by adding extra
parameters to the end of a subroutine call.

unicos Definedfor Cray Unicos

PROT OTYPES Defined for systems where the C compilers can handle prototypes.The
use of wrappers without this variable being defined has not been tested.

Note that all of these variables MUST be properly defined; defining vms and APPEND_FOR will yield
erroneous results.

DIAGNOSTICS
Self-explanatory (hopefully!). Syntax errors give the line number for the erroneous prototype, but the mes-
sages only localize to the nearest semicolon.

SEE ALSO
Congen, fcpp.

FILES
CAVEATS

Only support for VAX/VMS, Iris 4D, Convex, IBM RS/6000, HP 700 series workstations running HPUX,
and Crays running Unicos are currently implemented. DECstations and Sun Sparc based machines should
work with the current preprocessor variables.

When working withwrapgen, keep in mind that it performs two different functions. The fact that the proto-
types are written using C is very confusing.

AUTHOR
Robert E. Bruccoleri
Bristol-Myers Squibb Pharmaceutical Research Institute
P.O. Box 4000
Princeton, NJ 08543-4000 USA
bruc@bms.com

BUGS/COMMENTS
If you use this program, I would really appreciate your comments about it, both positive and negative.
Please send me mail.

COPYRIGHT
CONGEN™ Conformational Search and Molecular Modeling System

Copyright © 1987-1988 Robert E. Bruccoleri

Copyright (c) 1990-1997 Bristol-Myers Squibb Company

This software and related documentation is being provided by the copyright holders under the following
license. Byobtaining, using and/or copying this software, you agree that you have read, understood, and
will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice and this permission notice and war-
ranty disclaimer appear in all copies.

ROBERT E. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COMPANY DISCLAIMS, AND THE
USER WAIVES, ALL REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, WITH
REGARD TO THIS SOFTWARE AND ITS RELATED DOCUMENTATION, INCLUDING WITHOUT
LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR USE OR PURPOSE.ROBERT E. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COM-
PANY MAKES NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO
WHETHER THE USE OF THIS SOFTWARE AND ITS RELATED DOCUMENTATION INFRINGES
ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF ANY OTHER
PARTY. IN NO EVENT SHALL ROBERT E. BRUCCOLERI OR BRISTOL-MYERS SQUIBB

Macromolecular Modeling Local 4

WRAPGEN(1) WRAPGEN(1)

COMPANY BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, OR ANY OTHER DAMAGES OF ANY NATURE WHATSOEVER,
THAT MAY BE INCURRED BY THE USER OR ANY OTHER PARTY ARISING OUT OF OR IN
CONNECTION WITH ANY USE OR PERFORMANCE OF THIS SOFTWARE OR ANY USE OF ANY
DATA OR RESULTS GENERATED BY THE SOFTWARE, INCLUDING WITHOUT LIMITATION
LOSS OF DAT A AND LOST PROFITS OR REVENUES, WHETHER OR NOT DR. BRUCCOLERI
AND BRISTOL-MYERS SQUIBB COMPANY HAVE BEEN ADVISED OF THE POSSIBILITY OF
DAMAGES, AND USER HEREBY WAIVES, RELEASES, AND FOREVER DISCLAIMS ALL DAM-
AGES, CLAIMS, AND CAUSES OF ACTION IT MAY HAVE AGAINST DR. BRUCCOLERI AND
BRISTOL-MYERS SQUIBB COMPANY WITH RESPECT TO ANY LOSSES, DAMAGES, COSTS,
EXPENSES, AND LIABILITIES OF ANY NATURE THAT MAY BE INCURRED BY IT ARISING
OUT OF OR IN CONNECTION WITH USER’S USE OF THE SOFTWARE AND ITS RELATED DOC-
UMENTATION. USERSHALL BE SOLELY RESPONSIBLE FOR ALL LOSSES, DAMAGES, COSTS,
EXPENSES, AND LIABILITIES OF ANY NATURE INCURRED BY USER RESULTING FROM OR IN
CONNECTION WITH USER’S USE OF THE SOFTWARE AND ITS RELATED DOCUMENTATION.
THE USER UNDERSTANDS AND ACCEPTS THE ABOVE LIMITATIONS ON DAMAGES AND
REMEDIES AS A CONDITION OF OBTAINING USE OF THE SOFTWARE AND RELATED DOCU-
MENTATION WITHOUT CHARGE.

Macromolecular Modeling Local 5

hhhh hhhh

FFSSPPLLIITT((11)) MMaaccrroommoolleeccuullaarr ((BBSSDD 44..22)) FFSSPPLLIITT((11))

NNAAMMEE
fsplit − Split a multi-routine Fortran file into individual files

SSYYNNOOPPSSIISS
fsplit [-e efile] [files]

DDEESSCCRRIIPPTTIIOONN
Fsplit takes as input either a file or standard input containing Fortran source code. It attempts to split the
input into separate routine files of the formname.fwherenameis the name of the program unit (e.g. func-
tion, subroutine, block data or program). The name for unnamed block data subprograms has the form
blkdtaNNN.fwhere NNN is three digits and a file of this name does not already exist. For unnamed main
programs the name has the formmainNNN.f .If there is an error in classifying a program unit, or ifname.f
already exists, the program unit will be put in a file of the formzzzNNN.fwherezzzNNN.fdoes not already
exist.

-e efiles

Normally each subprogram unit is split into a separate file. When the-e option is used, only the specified
subprogram units are split into separate files. E.g.:

fsplit -e readit -e doit prog.f

will split readit and doit into separate files.

DDIIAAGGNNOOSSTTIICCSS
If names specified via the-e option are not found, a diagnostic is written to standard error.

HHIISSTTOORRYY
Fsplit appeared in 4.2 BSD.

AAUUTTHHOORRSS
Asa Romberger and Jerry Berkman

BBUUGGSS
Fsplit assumes the subprogram name is on the first noncomment line of the subprogram unit. Nonstandard
source formats may confusefsplit.

It is hard to use-e for unnamed main programs and block data subprograms since you must predict the
created file name.

Page 1 October 15, 1997

hhhh hhhh

hhhh hhhh

NNDDIIFFFFPPOOSSTT((11)) MMaaccrroommoolleeccuullaarr MMooddeelliinngg ((LLooccaall)) NNDDIIFFFFPPOOSSTT((11))

NNAAMMEE
ndiffpost− Numerical differences postprocessor

SSYYNNOOPPSSIISS
ndiffpost

[-cutoff=real] [-angle=real] [-sort] [-verbose] [-ignore=file] [input-file]

DDEESSCCRRIIPPTTIIOONN
ndiffpost is a postprocessing filter for thediff program. It goes through all of the differ-
ence blocks and reports the maximum absolute or relative differences found for each
number in each block. The blocks can be sorted in descending order (using the-sort
switch). It is very handy for comparing the results of a program after a small change is
made to a numerical calculation.

The program expects theinput-file to be the output of an ordinarydiff command. Do not
use any other options (such as-c) with thediff program.

An example usage would be

diff file1 file2 | ndiffpost -cutoff=1.0e-5 -sort

CCoommmmaanndd lliinnee ooppttiioonnss
Normally, if a block has no numerical differences, it is not
printed, but any numerical differences will result in the
block being printed. If this parameter is specified, then any
block with maximum differences greater than thecutoff
will be printed. It is useful for reducing the clutter in an
output file. If you want all blocks printed, specify a nega-
tive cutoff.

-cutoff=real

If this option is specified,ndiffpost will attempt to identify
differences in angles (measured in degrees) which bracket
180.0 degrees. For example, if one number is -179.99 and
the other is 179.99, then this option can be used to ignore
such differences. Thereal number specified as the operand
is the cutoff for difference test.

-angle=real

Blocks will be printed in reverse sorted order of the max-
imum difference found. This is helpful for scanning big
files of differences.

-sort

Debugging information will be displayed.-verbose
If this option is specified, each line in thefile will be used
as a Perl regular expression which is matched against each
difference line. If the regular expression matches, the
difference line will be ignored. If all difference lines in a
block are ignored, then the block itself will also be ignored.
This capability is very useful for screening out differences
which result from execution time variation or file names
changes.

-ignore=file

SSEEEE AALLSSOO
perl(1).

IIMMPPLLEEMMEENNTTAATTIIOONN
The script is written in Perl, which was translated from a earlier version written in Awk.

Page 1 September 30, 1998

hhh hhh

NNDDIIFFFFPPOOSSTT((11)) MMaaccrroommoolleeccuullaarr MMooddeelliinngg ((LLooccaall)) NNDDIIFFFFPPOOSSTT((11))

CCOOPPYYRRIIGGHHTT
CONGEN(tm) Conformational Search and Molecular Modeling System

Copyright (c) 1987-1988 Robert E. Bruccoleri

Copyright (c) 1990-1997 Bristol-Myers Squibb Company

This software and related documentation is being provided by the copyright holders
under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
and this permission notice and warranty disclaimer appear in all copies.

ROBERT E. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COMPANY DIS-
CLAIMS, AND THE USER WAIVES, ALL REPRESENTATIONS AND WARRAN-
TIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE AND ITS
RELATED DOCUMENTATION, INCLUDING WITHOUT LIMITATION ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR USE OR PURPOSE. ROBERT E. BRUCCOLERI AND BRISTOL-MYERS
SQUIBB COMPANY MAKES NO REPRESENTATION OR WARRANTY, EXPRESS
OR IMPLIED, AS TO WHETHER THE USE OF THIS SOFTWARE AND ITS
RELATED DOCUMENTATION INFRINGES ANY PATENT, COPYRIGHT, OR
OTHER INTELLECTUAL PROPERTY RIGHT OF ANY OTHER PARTY. IN NO
EVENT SHALL ROBERT E. BRUCCOLERI OR BRISTOL-MYERS SQUIBB COM-
PANY BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, INCIDENTAL, PUNI-
TIVE, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER DAMAGES OF ANY
NATURE WHATSOEVER, THAT MAY BE INCURRED BY THE USER OR ANY
OTHER PARTY ARISING OUT OF OR IN CONNECTION WITH ANY USE OR
PERFORMANCE OF THIS SOFTWARE OR ANY USE OF ANY DATA OR
RESULTS GENERATED BY THE SOFTWARE, INCLUDING WITHOUT LIMITA-
TION LOSS OF DATA AND LOST PROFITS OR REVENUES, WHETHER OR NOT
DR. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COMPANY HAVE BEEN
ADVISED OF THE POSSIBILITY OF DAMAGES, AND USER HEREBY WAIVES,
RELEASES, AND FOREVER DISCLAIMS ALL DAMAGES, CLAIMS, AND
CAUSES OF ACTION IT MAY HAVE AGAINST DR. BRUCCOLERI AND
BRISTOL-MYERS SQUIBB COMPANY WITH RESPECT TO ANY LOSSES, DAM-
AGES, COSTS, EXPENSES, AND LIABILITIES OF ANY NATURE THAT MAY BE
INCURRED BY IT ARISING OUT OF OR IN CONNECTION WITH USER’S USE OF
THE SOFTWARE AND ITS RELATED DOCUMENTATION. USER SHALL BE
SOLELY RESPONSIBLE FOR ALL LOSSES, DAMAGES, COSTS, EXPENSES,
AND LIABILITIES OF ANY NATURE INCURRED BY USER RESULTING FROM
OR IN CONNECTION WITH USER’S USE OF THE SOFTWARE AND ITS
RELATED DOCUMENTATION. THE USER UNDERSTANDS AND ACCEPTS THE
ABOVE LIMITATIONS ON DAMAGES AND REMEDIES AS A CONDITION OF
OBTAINING USE OF THE SOFTWARE AND RELATED DOCUMENTATION
WITHOUT CHARGE.

September 30, 1998 Page 2

hhh hhh

hhhh hhhh

RRSS66KKFFIIXX((11)) MMaaccrroommoolleeccuullaarr MMooddeelliinngg ((LLooccaall)) RRSS66KKFFIIXX((11))

NNAAMMEE
rs6kfix− Fixes output from IBM RS6000 Fortran formatted I/O.

SSYYNNOOPPSSIISS
rs6kfix [input-file]

DDEESSCCRRIIPPTTIIOONN
rs6kfix is a simple filter which changes output formats generated by the IBM RS6000
Fortran I/O library. Formatted output statements from this machine are unusual in that
the leading zero in fractions whose magnitude is smaller than 1 is omitted. This filter puts
that zero back. For example,-.124 is converted to-0.124. This program is very handy
when comparing results computed on an RS6000 with other machines.

An example usage would be

rs6kfix file1 | diff - file2 | ndiffpost cutoff=1.0e-5

SSEEEE AALLSSOO
ndiffpost(1)

OORRIIGGIINN
Robert E. Bruccoleri
Bristol-Myers SquibbPharmaceuticalResearch Institute

Page 1 October 15, 1997

hhh hhh

hhhh hhhh

AAVVGGTTAABBLLEE((11)) MMaaccrroommoolleeccuullaarr MMooddeelliinngg ((LLooccaall)) AAVVGGTTAABBLLEE((11))

NNAAMMEE
avgtable− Average CONGEN tables.

SSYYNNOOPPSSIISS
avgtable

[-ave] [-sd] [files ...]

DDEESSCCRRIIPPTTIIOONN
avgtable averages the data in multiple CONGEN tables, as generated by the WRITE
unit option, in theBUILD TABLE command, and writes the result into a new table.

An example usage would be

avgtable -ave table.out.1 table.out.2 table.out.3

CCoommmmaanndd lliinnee ooppttiioonnss
Specify calculation of averages. This is the default.-ave
Specify calculation of standard deviations.-sd

IIMMPPLLEEMMEENNTTAATTIIOONN
The script is written in Perl.

OORRIIGGIINN
Robert E. Bruccoleri
Bristol-Myers SquibbPharmaceuticalResearch Institute

Page 1 October 15, 1997

hhh hhh

