FLECS

A Structured Fortran Preprocessor
Processed by TEX on 17 December 2009

Terry Beyer
Computing Center
University of Oregon
Eugene, Oregon 97403

Additional Modifications by

Robert E. Bruccoleri

Department of Macromolecular Modeling

Bristol-Myers Squibb Pharmaceutical Research Institute
P.O. Box 4000

Princeton, N.J. 08543-4000

Internet: bruc@bms.com

This file documents FLECS — A Structured Fortran Preprocessor

Neither the authors nor the University of Oregon shall be liable for any direct or indirect, incidental,
consequential, or specific damages of any kind or from any cause whatsoever arising out of or in
any way connected with the use or performance of the Flecs system or its documentation.

Copyright 1992 Bristol-Myers Squibb Company
Copyright 1987 Robert E. Bruccoleri

Permission to use, copy, modify, and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice and this permission
notice and warranty disclaimer appear in all copies.

BRISTOL-MYERS SQUIBB COMPANY AND ROBERT E. BRUCCOLERI DISCLAIM, AND
THE USER WAIVES, ALL REPRESENTATIONS AND WARRANTIES, EXPRESS OR IM-
PLIED, WITH REGARD TO THIS SOFTWARE, INCLUDING WITHOUT LIMITATION ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
USE OR PURPOSE. BRISTOL-MYERS SQUIBB COMPANY AND ROBERT E. BRUCCO-
LERI MAKE NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO
WHETHER THE USE OF THIS SOFTWARE INFRINGES ANY PATENT, COPYRIGHT, OR
OTHER INTELLECTUAL PROPERTY RIGHT OF ANY THIRD PARTY. IN NO EVENT
SHALL BRISTOL-MYERS SQUIBB COMPANY OR ROBERT E. BRUCCOLERI BE LIABLE,
AND BY USING THIS SOFTWARE USER AGREES THAT BRISTOL-MYERS SQUIBB OR
ROBERT E. BRUCCOLERI SHALL NOT BE LIABLE, FOR ANY SPECIAL, DIRECT, IN-
DIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER
DAMAGES OF ANY NATURE WHATSOEVER, THAT MAY BE INCURRED BY THE USER
OR ANY THIRD PARTY ARISING OUT OF OR IN CONNECTION WITH ANY USE OF PER-
FORMANCE OF THIS SOFTWARE, INCLUDING WITHOUT LIMITATION LOST PROFITS
OR DAMAGES RESULTING FROM ANY LOSS OR USE OF DATA.

Please communicate any errors, ambiguities, or omissions to the authors. As of April 8, 1991,
Robert Bruccoleri was actively using FLECS.

Table of Contents

Preface by Robert E. Bruccoleri.................... 1
Acknowledgements of Terry Beyer 3
1 Introductionc.c.iiiiiiieieienenenenn. 5
1.1 Retention of Fortran Features.......... 5
1.2 Correlation of Flecs and Fortran Sources 6
1.3 Structured Statements. 6
1.4 Indentation, Lines and the Listing 8

2 FlecsStatementscviviiinnnn. 11
2.1 Control StrucCturest 11
2.1.1 Decision Structuresooiii 11
2. L. L. L IF 11

2.1.1.2 UNLESS ..ottt et et e e e e e e 12

2.1.1.3 WHEN. . .ELSEttt e e e e e e et e 13

2.1.1.4 CONDITIONALttt e e 14

2.1.1.0 SELECT ..ottt e e e e 15

2.1.2 LoOp StruCturesooounei e 15
2.1.2.1 DO .t 16

2.1.2.2 WHILEottt e e e e, 16

2.1.2.3 REPEAT WHILE 18

2.1.2.4 UNTIL ...ttt e e e, 19

2.1.2.5 REPEAT UNTIL e e e e e e e e e e e e e e e e, 20

2.2 Internal Procedures 20
2.3 Translator Directives 22
3 Restrictionsand Notes..........covvveenn.. 25
N L) o) =T 27
4.1 Syntax Errors....... ... 27
4.2 Context BErrors. 27
4.3 Undetected Errors. 27
4.4 Other Errors.t 28
5 Procedurefor Use.........coivvvnnnnnnn. 29
5.1 Source Preparation 29

5.2 Running the Translator........... i, 29

ii FLECS — A Structured Fortran Preprocessor

6 Flecs Implementation.......................... 31
6.1 Necessary and Desirable Modifications 31
6.2 System Structure.cooiiii 31
6.3 Character String Conventions 32
6.4 Translation Parameters......... i 32
6.5 Character Processing Subroutines 34

6.5.1 CATNUM (conCATenate NUMber to string) 35
6.5.2 CATSTR (conCATenate STRing to string) 35
6.5.3 CATSUB (conCATenate SUBstring to string) 36
6.5.4 CHTYP (CHaracter TYPe)......... 36
6.5.5 CPYSTR (CoPY STRIng).......c.ovviin 37
6.5.6 CPYSUB (CoPY SUBString)couovveiiiiniinenieenen.. 37
6.5.7 HASH (HASH function) ...t 38
6.5.8 MAKEST (MAKE STIING) . .. ovvenneee et 38
6.5.9 PUTNUM (PUT NUMDber)o 38
6.5.10 STREQ (STRing EQuality) ... 39
6.5.11 STRLT (STRing Less Than) ..., 39
6.5.12 STRUP (STRing UPpercase)...........oooviiiiiiieniiaai .. 40
6.5.13 TRIM (TRIM string of blanks) 40
6.6 I/O Interfaceo i 41
6.6.1 Filesand Devices........o i 41
6.6.2 Classes of Input/Output 41
6.6.2.1 Class FIECS . ..ot 42
6.6.2.2 Class FOrt ... 43
6.6.2.3 Class LiSt 43
6.6.2.4 Class Err........ooo i 43
6.6.3 Line Numberso o 43
6.7 I/O Subroutines.oeuuiiiie i 44
6.7.1 OPENF (OPEN Files)oouuuiii e 45
6.7.2 GET (GET input) ..o 47
6.7.3 PUT (PUT out strings) ..o, 48
6.7.4 CLOSEF (CLOSE Files)oon i 49
6.7.5 FLSTOP (FLecs STOP) ... 49

7 Installation and Modification................... 51
7.1 The Standard Version i 51
7.2 The Initial Working Version........... 52
7.3 Procedure for Creating the Initial Version........................... 53
7.4 Documentation 53
7.5 Desirable Modifications i i o3

7.5.1 Efficiency 53
7.5.2 CONVENIENCE ottt ettt e e e et e 53

Preface by Robert E. Bruccoleri 1

Preface by Robert E. Bruccoleri

I started using FLECS in 1978 when I wrote the analysis facility in CHARMM, a macromolecular
mechanics program.! It has been an invaluable tool in my programming work. Robert C. Ladner
introduced me to FLECS, and I have been maintaining the translator since then. The current
version described here is much easier to port from machine to machine largely because of Terry
Beyer’s good design, and because Fortran-77 supports character strings. The elegant string library
written by Terry is now much simpler.

This manual was scanned from a copy of the typewritten manual. All of the figures were
remade using the GnuEmacs picture mode in character form, and the rest of the text was edited
into Texinfo form. As much of the original text from Terry’s manuals was left intact, but since the
scanning process introduced many errors, please inform me of any mistakes.

Finally, I thank Terry Beyer for having written FLECS, and for having put the program in the
public domain. It has had an enormous impact in the development of CHARMM and of CONGEN.?
The spirit of sharing among many programmers is still strong, and this spirit is a way for us to
make our society a little bit richer for everyone.

1 B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, “CHARMM — A
Program for Macromolecular Energy, Minimization, and Dynamics Calculations”, J. Comput. Chem. 4, 187—217
(1983).

2 R.E. Bruccoleri, M. Karplus, “Prediction of the Folding of Short Polypeptide Segments by Uniform Conforma-
tional Sampling”, Biopolymers 26, 137-168 (1987).

FLECS — A Structured Fortran Preprocessor

Acknowledgements of Terry Beyer 3

Acknowledgements of Terry Beyer

The author is indebted to many people for assistance of one form or another during the course of this
project. Mike Dunlap, Kevin McCoy, and Peter Moulton deserve special thanks for many helpful
and fruitful discussions, suggestions, and encouragements. 1 am grateful to my wife, Kathleen,
who assisted in many ways including shielding me from the harsh reality of JCL and 360 Assembly
Language. Text preparation was adroitly accomplished by Marva VanNatta, Allyene Tom, Diane
Lane, and Kathleen Beyer.

This project was initiated while the author was working under a grant provided by the Office
of Scientific and Scholarly Research of the Graduate School at the University of Oregon. Work on
the project has also been supported in part by the Department of Computer Science and by the
Computing Center of the University of Oregon.

FLECS — A Structured Fortran Preprocessor

Chapter 1: Introduction)

1 Introduction

Fortran contains four basic mechanisms for controlling program flow: CALL/RETURN, IF, DO, and
various forms of the GO TO.

Flecs is a language extension of Fortran which has additional control mechanisms. These
mechanisms make it easier to write Fortran by eliminating much of the clerical detail associated
with constructing Fortran programs. Flecs is also easier to read and comprehend than Fortran.

This manual is intended to be a brief but complete introduction to Flecs. It is not intended
to be a primer on Flecs or structured programming. The reader is assumed to be a knowledgeable
Fortran programmer.

For programmers to whom transportability of their programs is a concern, it should be noted
that the Flecs translator source code is made freely available. The translator was written with
transportability in mind and requires little effort to move from one machine to another.

At Oregon, Flecs was implemented on both the PDP-10 and the IBM S/360. It has since been
implemented on a VAX/VMS, Silicon Graphics Iris 4D workstation, Convex, and Cray running
Unicos. The manner of implementation is that of a preprocessor which translates Flecs programs
into Fortran programs. The resulting Fortran program is then processed in the usual way. The
translator also produces a nicely formatted listing of the Flecs program which graphically presents
the control structures used.

The following diagram illustrates the translating process.

fomm + o + o +
Flecs				Translated
Source +---—--- >	Tramslator +------ >	Fortran		
Program				Source
S + S + fom— —— +				
[l [l				
\/ \/				
Fo————— + To				
Indented	Fortran			
Listing	Compiler			
fomm e +

1.1 Retention of Fortran Features

The Flecs translator examines each statement in the Flecs program to see if it is an extended state-
ment (a statement valid in Flecs but not in Fortran). If it is recognized as an extended statement,
the translator generates the corresponding Fortran statements. If, however, the statement is not
recognized as an extended statement, the translator assumes it must be a Fortran statement and
passes it through unaltered. Thus the Flecs system does not restrict the use of Fortran state-
ments, it simply provides a set of additional statements which may be used. In particular, GO TOs,
arithmetic IFs, CALLs, arithmetic statement functions, and any other Fortran statements, compiler
dependent or otherwise, may be used in a Flecs program.

Flecs ignores alphabetic case in all comparisons, so upper and lower case can be intermixed at
will.

Since there are conflicts between the Flecs syntax and Fortran-77 syntax as well as conflicts with
Fortran extensions, it is possible to turn off all translation activity within a portion of a program.
See Section 2.3 [Translator Directives], page 22, for a description of the TRANSLATE variable.

6 FLECS — A Structured Fortran Preprocessor

1.2 Correlation of Flecs and Fortran Sources

One difficulty of preprocessor systems like Flecs is that error messages which come from the Fortran
compiler must be related back to the original Flecs source program. There is no good solution to
this problem. Currently, the FLECS listing contains the sequential statement number of the Fortran
statements that correspond to FLECS statements. Since many Fortran compilers count lines from
the beginning of the file (as opposed to the beginning of a program unit), this is very helpful. For
other compilers, the wide availability of multi-window editors such as GNU Emacs make it possible
to simultaneously view the Flecs source file with either the Flecs listing or the Fortran translation.

Another possibility is the use of line numbers (not to be confused with Fortran statement
numbers) which can be placed on Flecs source statements. These line numbers then appear on the
listing. When an error message is produced by either the Flecs translator or the Fortran compiler,
it will include the line number of the offending Flecs source statement, making it easy to locate on
the listing.

If the programmer chooses not to supply line numbers, the translator will assign sequential
numbers and place them on the listing and in the Fortran source. Thus, errors from the compiler
may still be related to the Flecs listing.

Details of line numbering are machine dependent and are given in Chapter 5 [Procedure for
Use], page 29. On most card oriented systems, the line numbers may be placed in columns 76-80
of each card. Other systems may have special provisions for line numbers.

1.3 Structured Statements

A basic notion of Flecs is that of the structured statement which consists of a control phrase and
its scope. The control phrase is divided into two parts, a keyword followed by some additional
information called the specification. Fortran has two structured statements, the logical IF and the
DO. The following examples illustrate this terminology:

structured statement

e do—m - +
I I
control phrase scope
I I
Fomm o +
I | |
keyword specification |
I | I
e e I S + +o——t———+
| I I I I
IF (X.EQ.Y) U=V+W
keyword specification
| I
to—t——t - to—— = +
| (I |
DO 30 I 1,N } control phrase \
A(I) = B(I)+C \ } structured
L(I) = I-K(I) } scope } statement

30 CONTINUE / /

Chapter 1: Introduction 7

Note that each structured statement consists of a control phrase which controls the execution
of a set of one or more statements called its scope. Also note that each control phrase consists
of a keyword plus some additional information called the specification. A statement which does
not consist of a control phrase and a scope is said to be a simple statement. Examples of simple
statements are assignment statements, subroutine CALLs, arithmetic IFs, and GO TOs.

The problem with the Fortran logical IF statement is that its scope may contain only a single
simple statement. This restriction is eliminated in the case of the DO, but at the cost of clerical
detail (having to stop thinking about the problem while a statement number is invented). Note
also that the IF specification is enclosed in parentheses while the DO specification is not.

In Flecs there is a uniform convention for writing control phrases and indicating their scopes.
To write a structured statement, the keyword is placed on a line beginning in column 7 followed by
its specification enclosed in parentheses. The remainder of the line is left blank. The statements
comprising the scope are placed on successive lines. The end of the scope is indicated by a FIN
statement. This creates a multi-line structured statement.

Examples of multi-line structured statements:

IF (X.EQ.Y)
U = V+W
R = S+T
FIN

DO (I = 1,N)

A(I) = B(I)+C
C = Cx2.14-3.14
FIN
Note: The statement number has been eliminated from the DO specification since it is no longer
necessary, the end of the loop being specified by the FIN.
Nesting of structured statements is permitted to any depth.
Example of nested structured statements:
IF (X.EQ.Y)
U = V+W
DO (I = 1,N)
A(I) = B(I)+C
C = Cx2.14-3.14
FIN
R = S+T
FIN
When the scope of a control phrase consists of a single simple statement, it may be placed on
the same line as the control phrase and the FIN may be dispensed with. This creates a one-line
structured statement.
Examples of one-line structured statements:

IF (X.EQ.Y) U = V+W

DO (I = 1,N) A(I) = B(I)+C
Since each control phrase must begin on a new line, it is not possible to have a one-line structured
statement whose scope consists of a structured statement.

Example of an invalid construction:

IF (X.EQ.Y) DO (I = 1,N) A(I) = B(I)+C
To achieve the effect desired above, the IF must be written in a multi-line form.
Example of a valid construction:

8 FLECS — A Structured Fortran Preprocessor

IF (X.EQ.Y)
DO (I = 1,N) A(I) = B(I)+C
FIN
In addition to IF and DO, Flecs provides several useful structured statements not available in
Fortran. After a brief excursion into the subject of indentation, we will present these additional
structures.

1.4 Indentation, Lines and the Listing

In the examples of multi-line structured statements above, the statements in the scope were indented
which helps to reveal the structure of the program. The rules for using indentation and FINs are
quite simple and uniform. The control phrase of a multi-line structured statement always causes
indentation of the statements that follow. Nothing else causes indentation. A level of indentation
(i.e. a scope) is always terminated with a FIN. Nothing else terminates a level of indentation.

When writing a Flecs program on paper the programmer should adopt the indentation and line
drawing conventions shown below. When preparing a Flecs source program in machine readable
form, however, each statement should begin in column 7. When the Flecs translator produces
the listing, it will reintroduce the correct indentation and produce the corresponding lines. If the
programmer attempts to introduce his own indentation with the use of leading blanks, the program
will be translated correctly, but the resulting listing will be improperly indented.

Example of indentation:
1. Program as written on paper by programmer.

IF (X.EQ.Y)

U= V+W

Do (I = 1,N)
A(I) = B(I)+C
C = C%2.14-3.14
FIN

R = S+T

FIN

2. Program as entered into computer.

IF (X.EQ.Y)

U = V+W

DO (I = 1,N)
A(I) = B(I)+C

C = Cx2.14-3.14

FIN
R = S+T
FIN
3. Program as listed by Flecs translator.
IF (X.EQ.Y)
U = V+W
DO (I = 1,N)
A(I) = B(I)+C
C = Cx2.14-3.14
...FIN
R = S+T
...FIN

The correctly indented listing is a tremendous aid in reading and working with programs.
Except for the dots and spaces used for indentation, the lines are listed exactly as they appear in

Chapter 1: Introduction 9

the source program. That is, the internal spacing of columns 7-72 is preserved. There is seldom
any need to refer to a straight listing of the unindented source.

The listing file contains two columns of numbers to the left of the source code. The first number
specifies the line number in the FLECS input file. The second number gives the line number of
the last statement output to the Fortran output file. It gives a good indication for the Fortran
statement that corresponds to the FLECS statement on any given line.

Comment lines are treated in the following way on the listing to prevent interruption of the
dotted lines indicating scope. A comment line which contains only blanks in columns 2 through
6 will be listed with columns 7 through 72 indented at the then- current level of indentation as if
the line were an executable statement. If, however, one or more non-blank characters appear in
columns 2 through 6 of a comment card, it will be listed without indentation. Blank lines may be
inserted in the source and will be treated as empty comments.

10

FLECS — A Structured Fortran Preprocessor

Chapter 2: Flecs Statements 11

2 Flecs Statements

There are three classes of Flecs statements; control structures, internal procedures, and translator
directives. Control structures are statements which implement a particular control flow. Internal
procedures provide a mechanism for partitioning a subprogram into smaller pieces. Translator
directives control certain aspects of the translation process.

2.1 Control Structures

The complete set of control structures provided by Flecs is given below together with their corre-
sponding flow charts. The symbol, L, is used to indicate a logical expression. The symbol, S, is
used to indicate a scope of one or more statements. Some statements, as indicated below, do not
have a one-line construction.

A convenient summary of the information in this chapter may be found in Appendix A.

2.1.1 Decision Structures

Decision structures are structured statements which control the execution of their scopes on the
basis of a logical expression or test.

2.1.1.1 TIF

Description: The IF statement causes a logical expression to be evaluated. If the value is true, the
scope is executed once and control passes to the next statement. If the value is false, contol passes
directly to the next statement without execution of the scope.

General Form: Flow Chart:
IF (L) S .
/\ +mmmme +
Examples: / \ true | |
(L)-———-- >| s |
IF (X.EQ.Y) U = V+W \ / | I
\ / +-—+-—+
IF (T.GT.0 .AND. S.LT.R) | I
I=1+1 false | [
. Z=0.1 | <======mmmmm- +
..FIN [

12 FLECS — A Structured Fortran Preprocessor

2.1.1.2 UNLESS

Description: UNLESS (L) is functionally equivalent to IF (.NOT. (L), but is more convenient in some

contexts.
General Form: Flow Chart:
UNLESS (L) S .
/\ oot
Examples: / \ false | [
(L)——- > 8 |
UNLESS (X.NE.Y) U = V+W \ / I I
\ / +-—+——+
UNLESS (T.LE.O0.OR.S.GE.R) | I
I =1+1 true | |
Z=0.1 |[<—==——— +

...FIN |

Chapter 2: Flecs Statements 13

2.1.1.3 WHEN...ELSE

Description: The WHEN. . .ELSE statements correspond to the IF...THEN...ELSE statement of Al-
gol, PL/1, Pascal, etc. In Flecs, both the WHEN and the ELSE act as structured statements although
only the WHEN has a specification. The ELSE statement must immediately follow the scope of the
WHEN. The specifier of the WHEN is evaluated and exactly one of the two scopes is executed. The
scope of the WHEN statement is executed if the expression is true and the scope of the ELSE state-
ment is executed if the expression is false. In either case, control then passes to the next statement
following the ELSE statement.

General Form: Flow Chart:
WHEN (L) S1 .
ELSE S2 / \ o +
/ \ true | |
Examples: (L)-———- >| s1 |
N/ I I
WHEN (X.EQ.Y) U = V+W \ / et
ELSE U = V-W | |
false | [
WHEN (X.EQ.Y) | |
U = V+W v |
. T =T+1.5 f—— + |
...FIN | | |
ELSE U = V-W | 82 | |
| | I
WHEN (X.EQ.Y) U = V+W ot |
ELSE | |
U=V-W | <==———m - +
. T =T+1.5 |
...FIN v

WHEN (X.EQ.Y)

U = V+W
T =T-1.5
...FIN
ELSE
U=V-W
. T =T+1.5
...FIN

NOTE: WHEN and ELSE always come as a pair of statements, never separately. Either the WHEN
or the ELSE or both may assume the multi-line form. ELSE is considered to be a control phrase,
hence cannot be placed on the same line as the WHEN. Thus “WHEN (L) S1 ELSE S2” is not valid.

14 FLECS — A Structured Fortran Preprocessor

2.1.1.4 CONDITIONAL

Description: The CONDITIONAL statement is based on the LISP conditional. A list of logical ex-
pressions is evaluated one by one until the first expression to be true is encountered. The scope
corresponding to that expression is executed, and control then passes to the first statement follow-
ing the CONDITIONAL. If all expressions are false, no scope is executed. (See, however, the note
about OTHERWISE below.)

General Form: Flow Chart:
CONDITIONAL .
(L1) s1 / \ +o———— +
(L2) s2 / \ true | I
(L1)------ > S1 +---+
N/ | | I
. . . \ / Fm———— + |
..FIN | |
false | [
Examples: v |
. I
CONDITIONAL / \ +-————- + |
(x.LT.-5.0) U = U+W / \ true | | [
(X.LE.1.0) U = U+W+Z (L1)-—-—- > 82 +-->|
(x.LE.10.5) U = U-Z \ / I I I
...FIN \ / B + |
I I
CONDITIONAL false | |
(A.EQ.B) Z = 1.0
(A.LE.C)
Y =2.0 .
2 =3.4 v |
. FIN . [
(A.GT.C.AND.A.LT.B) Z = 6.2 / \ o +
(OTHERWISE) Z = 0.0 / \ true | | |
...FIN (Ln)-——- > Sn +-—>|
N/ | | I
\ / o +
I I
false | |
| <= +
I
v

Notes: The CONDITIONAL itself does not possess a one-line form. However, each “(Ln) Sn” is
treated as a structured statement and may be in one-line or multi-line form.

The reserved word OTHERWISE represents a catchall condition. That is, “(0OTHERWISE) Sn” is
equivalent to “(.TRUE.) Sn” in a CONDITIONAL statement.

Chapter 2: Flecs Statements 15

2.1.1.5 SELECT

Description: The SELECT statement is similar to the CONDITIONAL but is more specialized. It allows
an expression to be tested for equality to each expression in a list of expressions. When the first
matching expression is encountered, a corresponding scope is executed and the SELECT statement

terminates. In the description below, E, E1, ..., En represent arbitrary but compatible expressions.
Any type of expression (integer, real, complex, .. .) is allowed as long as the underlying Fortran
system allows such expressions to be compared with an .EQ. or .NE. operator.
General Form: Flow Chart:
SELECT (E) .
(E1) s1 / \ +o——- +
(E2) 82 / \ true | |
(E=E1)------ > S1 +———+
N/ | | [
. . \ / o + |
(En) Sn [I
...FIN false | [
v |
Example: |
/ \ to——- + [
SELECT (OPCODE(PC)) / \ true | | I
(JUMP) PC = AD (E=E2)-———- >| 82 +-->|
(ADD) N/ | | [
A = A+B \ / o= +
PC = PC+1 | I
...FIN false | |

(SKIP) PC = PC+2
(STOP) CALL STOPCD

...FIN . .
v [
. [
/ \ +o——= + [
/ \ true | | |
(E=En)------ > Sn +-->|
N/ | | [
\ / +o——- + [
[[
false | |
[<==mmmmm e +
[
v

Notes: As in the case of CONDITIONAL, at most one of the Si will be executed.

The catchall OTHERWISE may also be used in a SELECT statement. Thus “(0THERWISE) Sn” is
equivalent to “(E) Sn” within a “SELECT (E)” statement.

The expression is reevaluated for each comparison in the list, thus lengthy, time consuming, or
irreproducible expressions should be precomputed, assigned to a variable, and the variable used in
the specification portion of the SELECT statement

2.1.2 Loop Structures

The structured statements described below all have a scope which is executed a variable number
of times depending on specified conditions.

16 FLECS — A Structured Fortran Preprocessor

Of the five loops presented, the most useful are the DO, WHILE, and REPEAT UNTIL loops. To
avoid confusicn, the REPEAT WHILE and UNTIL loops should be ignored initially.

2.1.2.1 DO

Description: The Flecs DO loop is intended as a substitute for the Fortran DO loop, with the pri-
mary difference being syntactic. The Flecs translator is capable of generating two different forms
of Fortran code for the DO loop, depending on the setting of the translator directive, FAKEDQ, see
Section 2.3 [Translator Directives], page 22, for more information. In one form, the DO is translated
directly into the Fortran code by constructing a statement label and a CONTINUE statement at the
end of the statements. This form presents a problem when the loop contains internal procedures,
see Section 2.2 [Internal Procedures|, page 20. Internal procedure calls are translated into GO TO
statements, and violate the Fortran-77 standard which prohibits extended range DO loops. There-
fore, Flecs can generate an alternate form of DO loop, the FAKEDO form, which replaces the DO loop
with equivalent Fortran code.

In the syntax of Flecs DO loop, the statement number is omitted from the DO statement, the
incrementation parameters are enclosed in parenthesis, and the scope is indicated by either the one
line or multi-line convention.

General Form:

DO (V=START,STOP,INC) S
Form 1:
DO 10 V=START,STOP,INC
S
10 CONTINUE

Form 2 (Fakedo):

VAR=START
GO TO 20

10 VAR=VAR+(INC)

20 IF(INC.LT.0) GO TO 30
IF(VAR.GT.STOP) GO TO 50

GO TO 40
30 IF(VAR.LT.STOP) GO TO 50
40 S
GO TO 10
50 CONTINUE
Examples:

DO (I =1,N) A (I) =0.0

DO (J = 3,K,J)
B(J) = B(J-1)*B(J-2)
. C(@J) = SIN(B(]))
..FIN

2.1.2.2 WHILE

Description: The WHILE loop causes its scope to be repeatedly executed while a specified condition
is true. The condition is checked prior to the first execution of the scope, thus if the condition is
initially false the scope will not be executed at all.

Chapter 2: Flecs Statements

General Form: Flow Chart:

WHILE (L) S [
| <=———+
Examples: v |
. I
WHILE (X.LT.A(I)) I = I+1 / \ I
false / \ [
WHILE (P.NE.O) +-———C L) |
VAL(P) = VAL(P)+1 | \ / [
P = LINK(P) I \ / I
...FIN | I I
| true | [
[v [
I +-——-- + |
I I (.
I [s | |
I | [
| +——t——+ |
I I I
| +————= +

I
N +

18 FLECS — A Structured Fortran Preprocessor

2.1.2.3 REPEAT WHILE

Description: By using the REPEAT verb, the test can be logically moved to the end of the loop. The
REPEAT WHILE loop causes its scope to be repeatedly executed while a specified condition remains
true. The condition is not checked until after the first execution of the scope. Thus the scope will
always be executed at least once and the condition indicates under what conditions the scope is to
be repeated. Note: “REPEAT WHILE(L)” is functionally equivalent to “REPEAT WHILE(.NOT. (L))"

General Form: Flow Chart:

REPEAT WHILE (L) S |

| <====—= +
v I
Examples: o + |
| I I
REPEAT WHILE (N.EQ.M(I)) I = I+1 | s | |
I I I
REPEAT WHILE (LINK(Q).NE.Q) +——t——+

R = LINK(D) | |
LINK(Q) = P v |
P=2Q . |
. Q=R / \ |
..FIN / \ truel
(L)-—+

N/

\ /

false |

I
I
\

Chapter 2: Flecs Statements 19

2.1.2.4 UNTIL

Description: The UNTIL loop causes its scope to be repeatedly executed until a specified condition
becomes true. The condition is checked prior to the first execution of the scope, thus if the condition
is initially true, the scope will not be executed at all. Note that “UNTIL (L)” is functionally
equivalent to “WHILE (.NOT. (L))”.

General Form: Flow Chart:

UNTIL (L) S [
| <=———+
Examples: v |
. I
UNTIL (X.EQ.A(I)) I = I+1 / \ I
true / \ [
UNTIL (P.EQ.O) +-———C L) |
VAL(P) = VAL(P)+1 | \ / [
P = LINK(P) I \ / I
...FIN | | I
| falsel |
I v I
| 4 +
I I [
I [s | |
I | [
| +——t——+ |
I I I
| +————= +

I
N +

20 FLECS — A Structured Fortran Preprocessor

2.1.2.5 REPEAT UNTIL

Description: By using the REPEAT verb, the test can be logically moved to the end of the loop. The
REPEAT UNTIL loop causes its scope to be repeatedly executed until a specified condition becomes
true. The condition is not checked until after the first execution of the scope. Thus the scope will
always be executed at least once and the condition indicates under what conditions the repetition
of the scope is to be terminated.

General Form: Flow Chart:

REPEAT UNTIL (L) S

| <=————- +
Examples: v |
+———— + |
REPEAT UNTIL (N.EQ.M(I)) I = I+1 | [[
| s | |
REPEAT UNTIL (LINK(Q).EQ.O) | [[
R = LINK(Q) +——+--+ |
LINK(Q) = P | |
P =Q v [
. Q=R . |
..FIN / \ I
/ \falsel
(L)-—-+
N/
\ /

true |

|

|

v

2.2 Internal Procedures

In Flecs a sequence of statements may be declared an internal procedure and given a name. The
procedure may then be invoked from any point in the program by simply giving its name.

Procedure names may be any string of letters, digits, and hyphens (i.e. minus signs) beginning
with a letter and containing at least one hyphen. Internal blanks are not allowed. The only
restriction on the length of a name is that it may not be continued onto a second line.

Examples of valid internal procedure names:

INITTALIZE-ARRAYS
GIVE-WARNING
SORT-INTO-DESCENDING-ORDER
INITIATE-PHASE-3

A procedure declaration consists of the keyword “T0” followed by the procedure name and its
scope. The set of statements comprising the procedure is called its scope. If the scope consists
of a single simple statement it may be placed on the same line as the “T0” and procedure name,
otherwise the statements of the scope are placed on the following lines and terminated with a FIN
statement. These rules are analogous with the rules for forming the scope of a structured statement.

General Form of procedure declaration:
TO procedure-name

Examples of procedure declarations:

Chapter 2: Flecs Statements 21

TO RESET-POINTER P = 0
TO DO-NOTHING CONTINUE

TO SUMMARIZE-FILE
INITIALIZE-SUMMARY
OPEN-FILE
REPEAT UNTIL (EOF)

ATTEMPT-TO-READ-RECORD
WHEN (EOF) CLOSE-FILE
ELSE UPDATE-SUMMARY
...FIN
. OUTPUT-SUMMARY
..FIN

An internal procedure reference is a procedure name appearing where an executable statement
would be expected. In fact an internal procedure reference is an executable simple statement and
thus may be used in the scope of a structured statement as in the last example above. When control
reaches a procedure reference during execution of a Flecs program, a return address is saved and
control is transferred to the first statement in the scope of the procedure. When control reaches
the end of the scope, control is transferred back to the statement logically following the procedure
reference.

A typical Flecs program or subprogram consists of a sequence of Fortran declarations: (e.g.
INTEGER, DIMENSION, COMMON, etc.) followed by a sequence of executable statements called the
body of the program followed by the Flecs internal procedure declarations, if any, and finally the
END statement.

Here is a complete (but uninteresting) Flecs program which illustrates the placement of the
procedure declarations.

00010 C INTERACTIVE PROGRAM FOR THE PDP-10 TO COMPUTE Xx**2
00020 C ZERO IS USED AS A SENTINEL VALUE TO TERMINATE EXECUTION.

00030

00040 REAL X,XSQ

00050 REPEAT UNTIL (X.EQ.0)
00060 . GET-A-VALUE-OF-X
00070 . IF (X.NE.O)

00080 . . COMPUTE-RESULT
00090 .. TYPE-RESULT
00100 . . FIN

00110 ...FIN

00120 CALL EXIT

00130 TO GET-A-VALUE-OF-X
00140 . TYPE 10

00150 10 . FORMAT (X = 7,$)
00160 . ACCEPT 20,X

00170 20 . FORMAT (F)

00180 ...FIN

22 FLECS — A Structured Fortran Preprocessor

00190 TO COMPUTE-RESULT XSQ = X*X
00200 TO TYPE-RESULT

00210 . TYPE 30,X8Q

00220 30 . FORMAT(’ X-SQUARED = ’,F7.2)
00230 .. FIN

00240 END

Notes concerning internal procedures:

1. All internal procedure declarations must be placed at the end of the program just prior to
the END statement. The appearance of the first “T0” statement terminates the body of the
program. The translator expects to see nothing but procedure declarations from that point
on.

2. If an internal procedure is called from within a DO loop, you must ensure that either FAKEDO is
enabled, see Section 2.3 [Translator Directives], page 22, or that the Fortran compiler correctly
handles extended range DO loops. By default, FAKEDO is enabled.

3. The order of the declarations is not important. Alphabetical by name is an excellent order for
programs with a large number of procedures.

4. Procedure declarations may not be nested. In other words, the scope of a procedure may not
contain a procedure declaration. It may of course contain executable procedure references.

5. Any procedure may contain references to any other procedures (excluding itself).
6. Dynamic recursion of procedure referencing is not permitted.

7. All program variables within a main or subprogram are global and are accessible to the state-
ments in all procedures declared within that same main or subprogram.

8. There is no formal mechanism for defining or passing parameters to an internal procedure.
When parameter passing is needed, the Fortran function or subroutine subprogram mechanism
may be used or tlie programmer may invent his own parameter passing methods using the global
nature of variables over internal procedures.

9. The Flecs translator separates procedure declarations on the listing by dashed lines as shown
in the preceding example.

2.3 Translator Directives

The operation of Flecs translator can be modified using translator directives. These commands are
specified using a special form of comment statement which has the form,

C $FLECS directive state

Any amount of white space can separate the various components. At present, all of the directives
are Boolean, i.e., they are either on or off. The state can be specified as ON, OFF, TRUE or FALSE.
The following directives are provided:

CPASS Normally, the Flecs translator does not pass comment to the output Fortran source
code. When this directive is enabled, comments pass through.

FAKEDO, DFAKDO
These directives control how DO loops are translated. They only apply to the Flecs form
of DO loops. DO loops that are coded in Fortran (using an explicit statement number)
are not affected by these directives. When a new subprogram is translated, FAKEDO
is set to the value in DFAKDO (DFAKDO stands for Default FAKe DO). Whenever a DO
loop is encountered, a Fortran style DO loop will be generated if FAKEDO is FALSE.

Chapter 2: Flecs Statements 23

TRANSLATE

Otherwise, a semantic equivalent will be generated using assignments, IF statements,
and GOTOs. See See Section 2.1.2.1 [DO], page 16, for a description of both generated
forms.

TRANSLATE controls whether the translator actually performs any translations. Nor-
mally, TRANSLATE is turned on, but it can be turned off when pure Fortran code is
incorporated into a Flecs subprogram. It applies for only one subprogram after which
it is turned on.

24

FLECS — A Structured Fortran Preprocessor

Chapter 3: Restrictions and Notes 25

3 Restrictions and Notes

If Flecs were implemented by a nice intelligent compiler this chapter would be much shorter. Cur-
rently, however, Flecs is implemented by a sturdy but naive translator. Thus the Flecs programmer
must observe the following restrictions.

1. Flecs must invent many statement numbers in creating the Fortran program. It does so by
beginning with a large number (usually 99999) and generating successively smaller numbers
as it needs them. Do not use a number which will be generated by the translator. A good rule
of thumb is to avoid using 5 digit statement numbers.

2. The Flecs translator must generate integer variable names. It does so by using names of the
form “Innnnn” when nnnnn is a 5 digit number related to a generated statement number. Do
not use variables of the form Innnnn and avoid causing them to be declared other than INTEGER.
For example the declaration “IMPLICIT REAL (A-Z)” leads to trouble. Try “IMPLICIT REAL
(A-H,J-Z)” instead.

3. The translator does not recognize continuation lines in the source file. Thus Fortran statements
may be continued since the statement and its continuations will be passed through the trans-
lator without alteration, see Section 1.1 [Retention of Fortran Features], page 5. However,
an extended Flecs statement which requires translations may not be continued. The reasons
one might wish to continue a Flecs statement are 1) It is a structured statement or procedure
declaration with a one statement scope too long to fit on a line, or 2) it contains an excessively
long specification portion or 3) both of the above. Problem 1) can be avoided by going to the
multi-line form. Frequently problem 2) can be avoided when the specification is an expression
(logical or otherwise) by assigning the expression to a variable in a preceding statement and
then using the variable as the specification.

4. Fortran-77 prohibits extended range DO loops. This presents a problem when internal proce-
dures are used within DO loops. Some Fortran compilers work correctly with this combination;
others do not. Flecs can generate an alternate form of DO loop which uses IFs and GOTOs to
achieve the same semantics as a DO loop. The translator directives, FAKEDO and DFAKDO, can
be used to control this feature. These directives are normally turned on, so that all Flecs
programs have the correct semantics, but when code optimization is desired, it is necessary to
be selective in their use.

5. Blanks are meaningful separators in Flecs statements; don’t put them in dumb places like the
middle of identifiers or key words and do use them to separate distinct words like REPEAT and
UNTIL.

6. Let Flecs indent the listing. Start all statements in column 7, and the listing will always reveal
the true structure of the program. (as understood by the translator, of course).

7. As far as the translator is concerned, FORMAT statements are executable Fortran statements
since it doesn’t recognize them as extended Flecs statements. Thus, only place FORMAT state-
ments where an executable Fortran statement would be accentable. Don’t put them between
the end of a WHEN statement and the beginning of an ELSE statement. Don’t put them between
procedure declarations.

Incorrect Examples: Corrected Examples:
WHEN (FLAG) WRITE(3,30) WHEN (FLAG)
30 FORMAT(’ TITLE: ’) . WRITE(C 3, 30)
ELSE LINE = LINE+1 30 . FORMAT(’ TITLE: ’)
...FIN

ELSE LINE = LINE+1

26

8.

10.

FLECS — A Structured Fortran Preprocessor

TO WRITE-HEADER TO WRITE-HEADER
PAGE = PAGE+1 . PAGE = PAGE+1
WRITE(3,40) H,PAGE . WRITE(3,40) H,PAGE
...FIN 40 . FORMAT (70A1,I3)
40 FORMAT (70A1,I3) ...FIN

The translator, being simple-minded, recognizes extended Flecs statements by the process of
scanning the first identifier on the line. If the identifier is one of the Flecs keywords IF, WHEN,
UNLESS, FIN, etc., the line is assumed to be a Flecs statement and is treated as such. Thus,
the Flecs keywords are reserved, and may not be used as variable names. In case of necessity, a
variable name, say WHEN, may be slipped past the translator by embedding a blank within it.
Thus “WH EN” will look like “WH” followed by “EN” to the translator which is blank sensitive,
but like “WHEN” to the compiler which ignores blanks. Another alternative is to turn off the
TRANSLATE translator directive, see Section 2.3 [Translator Directives|, page 22, which inhibits
the translation process entirely.

In scanning a parenthesized specification, the translator scans from left to right to find the
parenthesis which matches the initial left parenthesis of the specification. The translator,
however, is ignorant of Fortran syntax including the concept of Hollerith constants and will
treat Hollerith parenthesis as syntactic parenthesis. Thus, avoid placing Hollerith constants
containing unbalanced parenthesis within specifications. If necessary, assign such constants to
a variable, using a DATA or assignment statement, and place the variable in the specification.

Incorrect Example: Corrected Example:
IF (J.EQ. ‘(9 Lp = (
IF(J.EQ.LP)

The Flecs translator will not supply the statements necessary to cause appropriate termination
of main and sub-programs. Thus, it is necessary to include the appropriate RETURN, STOP, or
CALL EXIT statement prior to the first internal procedure declaration. Failure to do so will result
in control entering the scope of the first procedure after leaving the body of the program. Do
not place such statements between the procedure declarations and the END statement.

Chapter 4: Errors 27

4 Errors

This section provides a framework for understanding the error handling mechanisms of the Flecs
Translator. The system described below is at an early point in evolution, but has proven to be
quite workable.

The Flecs translator examines a Flecs program on a line by line basis. As each lane is encoun-
tered it is first subjected to a limited syntaz analysis followed by a context analysis. Errors may
be detected during either of these analysis. It is also possible for errors to go undetected by the
translator.

4.1 Syntax Errors

When a syntax error is detected by the translator, it ignores the statement. On the Flecs listing
the line number of the stetement is overprinted with hyphens (“C)”) to indicate that the statement
has been ignored. The nature of the syntax error is given in a message on the following line.

The fact that a statement has been ignored may, of course, cause some context errors in later
statements. For example the control phrase “WHEN (X(I).LT. (3+4)” has a missing right parenthe-
sis. This statement will be ignored, causing as a minimum the following ELSE to be out of context.
The programmer should of course be aware of such effects. More is said about them in the next
section.

4.2 Context Errors

If a statement successfully passes the syntax analysis, it is checked to see if it is in the appropriate
context within the program. For example an ELSE must appear following a WHEN and nowhere else.
If an ELSE does not appear at the appropriate point or if it appears at some other point, then a
context error has occurred. A frequent source of context errors in the initial stages of development
of a program comes from miscounting the number of FIN’s needed at some point in the program.

With the exception of excess FIN’s which do not match any preceding control phrase and are
ignored, all context errors are treated with a uniform strategy. When an out-of-context source
statement is encountered, the translator generates a “STATEMENT(S) NEEDED” message. It then
invents and processes a sequence of statements which, if they had been included at that point in
the program, would have placed the original source statement in a correct context. A message is
given for each such statement invented. The original source statement is then processed in the
newly created context.

By inventing statements, the translator is not trying to patch up the program so that it will run
correctly. It is simply trying to adjust the local context so that the original source statement and
the statements which follow will be acceptable on a context basis. As in the case of context errors
generated by ignoring a syntactically incorrect statement, such an adjustment of context frequently
causes further context errors later on. This is called propagation of context errors.

One nice feature of the context adjustment strategy is that context errors cannot propagate
past a recognizable procedure declaration. This is because the “T0” declaration is in context only
at indentation level O. Thus to place it in context, the translator must invent enough statements to
terminate all open control structures which preceed the “T0”. The programmer who modularizes his
program into a collection of relatively short internal procedures, limits the potential for propagation
of context errors.

4.3 Undetected Errors

The Flecs translator is ignorant of most details of Fortran syntax. Thus most Fortran syntax errors
will be detected by the Fortran compiler not the Flecs translator. In addition there are two major
classes of Flecs errors which will be caught by the compiler not the translator.

28 FLECS — A Structured Fortran Preprocessor

The first class of undetected errors involve misspelled Flecs keywords. A misspelled keyword
will not be recognized by the translator. The line on which it occurs will be assumed to be a
Fortran statement and will be passed unaltered to the compiler which will no doubt object to it.
For example a common error is to spell UNTIL with two L’s. Such statements are passed to the
compiler, which then produces an error message. The fact that an intended control phrase was not
recognized frequently causes a later context error since a level of indentation will not be triggered.

The second class of undetected errors involves unbalanced parentheses. (See also note 8 in
Chapter 3 [Restrictions and Notes|, page 25.). When scanning a parenthesized specification, the
translator is looking for a matching right parenthesis. If the matching parenthesis is encountered
before the end of the line, the remainder of the line is scanned. If the remainder is blank or consists
of a recognizable internal procedure reference, all is well. If neither of the above two cases hold,
the remainder of the line is assumed (without checking) to be a simple Fortran statement which is
passed to the compiler. Of course, this assumption may be wrong. Thus the statement

WHEN (X.LT.A(I)+Z)) X =0
is broken into
keyword: WHEN

specification: (X.LT.A(D)+2)
Fortran statement:) X =0

Needless to say the compiler will object to “) X = 0” as a statement.

Programmers on batch oriented systems have less difficulty with undetected errors due to the
practice of running the program through both the translator and the compiler each time a run is
submitted. The compiler errors usually point out any errors undetected by the translator.

Programmers on timesharing systems tend to have a bit more difficulty since an undetected
error in one line may trigger a context error in a much later line. Noticing the context error, the
programmer does not proceed with compilation and hence is not warned by the compiler of the
genuine cause of the error. One indication of the true source of the error may be an indentation
failure at the corresponding point in the listing.

4.4 Other Errors

The Translator detects a variety of other errors such as multiply defined, or undefined procedure
references. The error messages are self-explanatory. (Really and truly!)

Chapter 5: Procedure for Use 29

5 Procedure for Use

The following subsections describe the procedures for using the Flecs translator on the various
machines where is has been ported.

5.1 Source Preparation

Prepare a Flecs source file with any name of your choosing and an extension of ‘.flx’. It is
important to use lower case on Unix machines for the extension. As with many Fortrans, the “tab
to column 7”7 convention may be used.

5.2 Running the Translator
On the VAX running VMS, the Silicon Graphics Iris 4D, the Convex, and the Cray running UNI-
COS; Flecs is executed as a command to the shell. The usage is as follows:

flecs files

where files is a list of Flecs source files, each separated by a blank (additionally commas on the
VAX). If a file specified in a command has no suffix, then ‘. £1x’ will be added automatically. The
translator will use the main part of the file name as the prefix for the Flecs listing and translated
Fortran output. The Flecs listing has a suffix of *.£1i’, and the Fortran listing has a suffix of ‘.f’
on Unix machines, and ‘. for’ on VMS machines.

Example:
flecs util string.flx

would read the files ‘util.flx’ and ‘string.f1x’, and produce Fortran translations into ‘util.f’
and ‘string.f’, and write Flecs listings into ‘util.f1li’ and ‘string.fli’. On VMS machines,
the Fortran translations would be written into ‘util.for’ and ‘string.for’, instead.

In the event of errors, failure status codes are returned to the shell.

In environments where Fortran programs cannot gain access to the command line directly, Flecs
can be modified to read from Fortran units. See Chapter 6 [Flecs Implementation], page 31, for
more information.

30

FLECS — A Structured Fortran Preprocessor

Chapter 6: Flecs Implementation 31

6 Flecs Implementation

The Flecs translator system is written in Flecs and has been designed with ease of transportation
from one machine to another and adaptability to varying system configurations as two of its primary
goals. The Flecs system may be freely copied and transported without explicit permission of the
authors, provided that the copyright notice and warranty disclaimer are included.

This chapter is intended to assist programmers who wish to further modify a Flecs translator
which has already been adapted to their machine. For the sake of completeness it also describes
the changes necessary in moving Flecs from one machine to another.

Only those portions of the translator which are pertinent to adapting it to varying machine and
system configurations are considered. The internal logic of the translator is not discussed except
as it relates to these goals.

It is assumed the reader has a knowledge of the Flecs language and translator system equivalent
to that found in the Flecs Users Manual.

6.1 Necessary and Desirable Modifications

Modification of the standard Flecs system may be necessary or desirable to accomplish any of the
following goals:

1. To adapt the translator to a new character set;

2. To adapt the translator to a new operating system and I/O environment;

3. To adapt to idiosyncrasies in the Fortran dialect with which the translator must interface;
4

. To adjust the size and capacity of the translator to account for available memory capacity and
expected workload;

5. To improve the speed of the translator by replacing the standard Flecs-coded subroutines with
more efficient versions.

In adapting the translator to a new computer one can identify two classes of modifications.
The first class consists of those modifications which are absolutely necessary before the translator
can function at all on the given machine. We call these the necessary modifications. Examples of
necessary modifications are those required to adapt the translator to the appropriate character set,
memory size, and I/O configurations Most, if not all, of the necessary modifications can be per-
formed by rewriting certain DIMENSION, DATA, and FORMAT statements and by rewriting a few of the
machine dependent subroutines. Explicit instructions for carrying out the necessary modifications
are given in this manual.

The second class of modifications are those which improve the quality of service provided by
the translator. We call these the desirable modifications. Examples of desirable modifications
are improvement in execution time, adaptation to convenient but unorthodox features of the local
Fortran dialect, and integration of the translator into the operating system so that it becomes
more convenient to use. Many of the desirable modifications may be accomplished by rewriting
some of the standard subroutines. Suggestions for carrying out these modifications are included in
this manual. Desirable modifications which can be accomplished only by altering the fundamental
logical structure of the system are beyond the scope of this manual.

6.2 System Structure

The standard Flecs translator system consists of a main prcgram, I/0 interface subroutines, char-
acter processing subroutines, and a trivial statement number generating subroutine. The entire
collection consisting of the main program and all subprograms will be referred to as the Flecs sys-
tem or simply the system. The main program by itself will be referred to as the Flecs translator
or simply the translator.

32 FLECS — A Structured Fortran Preprocessor

The Flecs translator embodies the algorithm for translating Flecs to Fortran and for producing
the Flecs listing. The string processing subroutines are used by both the translator and the I/0O
subroutines to perform most of the necessary character string manipulation. The five I/O sub-
routines OPENF, GET, PUT, CLOSEF, and FLSTOP represent the interface between the Flecs system
and the operating system of the computer. The statement number generating subroutine NEWNO
generates a new Fortran statement number each time it is called.

Certain variables within the translator are called parameters and are assigned initial values by
DATA statements within the translator. Many of the necessary or desirable modifications may be
effected by altering the initial values of these parameters. Some of the parameters are communicated
to various subroutines in the system via the labeled COMMON /PARAM/. With this exception, all
communication between programs is via the usual Fortran linkages.

Most I/O and operating system dependencies have been isolated within the I/O interface sub-
routines. By altering or rewriting these routines, the translator may be adapted to a variety of I/O
and operating system environments from card- oriented batch systems to terminal-oriented time
sharing systems Alteration of the I/O subroutines may also be used to compensate partially for
certain pathologies in the local Fortran dialect.

In order to further simplify the maintenance of Flecs across different platforms, the C prepro-
cessor! is used to conditionally compile operating system dependencies, and to allow for debugging
statements to be conditionally included. If the C preprocessor is not available on your system, one
can obtain a free C preprocessor from the Free Software Foundation as part of the GNU Emacs
distribution or as part of their C compiler, or it can be obtained from DECUS. As a last resort, the
selection of appropriate statements can be done by hand. The meaning of the various preprocessor
variables is easily determined from the source code.

Some of the subroutines in the translator have been written to exercise uncommon features in
the translator. By so doing, the translator makes a good test case for itself.

6.3 Character String Conventions

The Flecs translator is basically a character string processing program. In the past, character string
processing in Fortran was only possible in machine dependent ways, and the original implementation
of Flecs reflected those limitations. With the advent of Fortran-77, a character data type is provided
in the language, and character string processing is much simpler.

Logically, the translator uses varying length character strings. These are implemented in the
translator by using two variables for each ‘string’, one variable holds the characters and is defined
as CHARACTER type, and the additional variable holds the length and has INTEGER type. When a
character string is passed to a subroutine, and the subroutine is only reading the characters, then
a substring reference can be used to refer to just the relevant part of the string. If the subroutine
modifies the string, then both the string and its length must be passed so that the length can be
updated.

The current version of the translator is written for the Ascii character set, but adaptation to
other character sets is straightforward. It is assumed that the internal character codes for the
digits “@” through “@©)” are consecutive and increasing in value. For example, in 7-bit ASCII the
values are 48 through 57. This assumption is used within the translator only in the procedure
SCAN-STATEMENT-NUMBER.

6.4 Translation Parameters

This chapter describes the meaning and use of the various parameters which control the functioning
of the translator. Each parameter is given an initial value by a DATA statement in the “PARAMETERS”

L'B. w. Kernighan and D. W. Ritchie, The C Programming Language, 2nd Edition, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

Chapter 6: Flecs Implementation 33

section of the declarations (see the listing of the translator). The parameters are listed below in
alphabetical order.

CHSPAC

CHZERO

(CHaracter code for SPACe)

This parameter is set to the value of the character code for a space (or blank). It is
used by the translator in checking on the continuation column (column 6) and is made
available to the subroutines via the COMMON /PARAM/.

(CHaracter code for ZERO)

The procedure SCAN-STATEMENT-NUMBER creates a Fortran integer whose value is equal
to the statement number of the current Flecs source statement. To do so it must know
the machine’s code values for the characters “@©)”,...,“®”. It computes these values
from CHZEROQ, the code for “@@”, by assuming the values are consecutive and increasing
in order. (If this assumption is not correct for a given machine, the procedure SCAN-
STATEMENT-NUMBER must be rewritten.) For example, the 7- bit ASCII code for zero is
60 (octal) 48 (decimal). Initialization of this variable is done using the Fortran intrinsic
function, ICHAR.

COGOTO, FAKE, LONG, SHORT

LWIDTH

MAXSTK

(Internal procedure linkage)

When an internal procedure is called, the translator will generate a new statement num-
ber which will be used to label the statement following the procedure call. generate
a GO TO statement to the first statement of the internal procedure, and the statement
following the GO TO will be labeled with a generated statement number. When the in-
ternal procedure finishes execution, it must return to the appropriate calling point. The
mechanism by which an internal procedure is called and by which control is returned to
the calling point can be implemented by basically two different methods, a computed
GOTO or an assigned GOTO. The four variables control which method is used. One and
only one variable should be set to . TRUE., the remainder must be set to .FALSE.

The most portable method is the computed GO TO method. If the variable, COGOTO is
.TRUE., then the translator will use a computed GOTO for returning from an internal
procedure.

The other three variables permit various types of assigned GO TO statements to be
used. SHORT specifies the most straightforward, a GO TO i, with no list of of possible
statement numbers following. LONG will construct an assigned GO TO with the full list of
possibilities following the variable name. FAKE can be used only with compilers which
insist on the presence of a list of statement numbers after an assigned GOTO but ignore
its content. It should not be used if the short form is valid. If the short form is not
valid then FAKE may he used provided that 1) it works properly 2) the user is willing
to trade trickiness and obscurity for efficiency.

(Listing WIDTH)
This parameter informs the translator of the number of printable positions available
for creating the Flecs listing. A common value is 132 for many high speed line printers.

(MAXimum STacK size)

The parameter MAXSTK informs the translator of the size of the array STACK. This array
is used for two purposes. It contains the working stack of the translator at one end
beginning with STACK (1) and the internal procedure cross reference table at the other
end beginning with STACK(MAXSTK). The size of the array is changed by altering its
DIMENSION statement and by supplying its new size to the translator via MAXSTK. A
value of 2000 has been found to be more than sufficient for translating the translator
itself on all machines encountered so far.

34 FLECS — A Structured Fortran Preprocessor

PRIME (a PRIME number)
This parameter should be a positive prime number. The cross reference table of in-
ternal procedure names is maintained as a hash table with PRIME number of buckets.
Considerations in selecting a value of PRIME are:

1. Larger values of PRIME tend to cause fewer collisions in the hash table and make
table referencing more efficient.

2. The number of entries in array STACK used for bucket header pointers is exactly
PRIME. Hence, smaller values of PRIME save space.

3. The relationships among the value of PRIME, the hashing algorithm employed by
subprogram HASH, and the character codes of the machine may be adjusted to
reduce the expected number of collisions. (See Knuth, D. E., Vol. 3 of The Art of
Computer Programming, section 6.4.)

QUTCNT (OUTput CouNTer)
Keeps track of the number of Fortran statements output thus far. It is printed on the
listing file so that FLECS statements can be related to Fortran statement numbers.

SAFETY (SAFETY margin)

Within the main loop of the procedure PROCESS-PROGRAM, entries may be pushed onto
the working stack. Rather than check for stack overflow as each entry is pushed on, a
check is made at the beginning of the loop to insure that at least SAFETY entries are
available between the current top of the stack and the bottom of the table area. It
is normally not possible to push more than SAFETY items onto the stack in one cycle
of the loop. Those procedures which might cause such an overflow contain their own
overflow checking code. The value of SAFETY need not be altered by the implementator
unless he is altering the logic of stack or table usage within the translator.

SEEDNO (SEED for statement Numbers)
The translator generates new Fortran statement numbers in descending sequence start-
ing with the value SEEDNO-1. Normally, SEEDNO is initialized to 100000 so that numbers
are generated in the sequence 99999, 99998.. ... However, on some machines of small
word length it may not be possible to represent a number this large in a Fortran integer.
In this case, a smaller seed number may be chosen.

6.5 Character Processing Subroutines

There are a number of character or character string processing subprograms supplied with the
system. They have been written in Flecs with transportability, not efficiency, as a primary goal.
These routines are heavily used by the translator, but are not particularly efficient as written and
could be replaced by more efficient versions if desired. However, one should keep in mind that the
time for compiling the Fortran code is usually much longer than the time for translation, so the gains
may not have much effect. However, some implementations of Fortran I/O or string manipulation
are particularly inefficient. Anyone porting the translator should measure the execution time of
translation versus compilation of a Flecs program. If the translation times are excessive relative to
the compilation time, then some effort should be spent on efficiency. Previous experience indicates
that profiling followed by a few small modifications will solve most efficiency problems.

Functional definitions of the character processing subroutines are given below listed in alpha-
betical order by subroutine name. In describing the arguments of the subroutines, the designations

”

“In”, “out”, and “in/out” are used with the following meanings:

in The argument contains a value supplied to the subroutine by the calling program. The
value is not altered by the subprogram. In the case of character strings, no length is
passed. Rather, the maximum length of the string as specified by the Fortran function,
LEN, gives the length of the string.

Chapter 6: Flecs Implementation 35

out The initial value of the argument is ignored by the subroutine and it is assigned a new
value by the subroutine. If an argument is a string, and the length can be changed by
the subroutine, then a length variable for the string is also passed.

in/out The argument contains a value supplied to the subroutine by the calling program which
may be altered by the subroutine. If an argument is a string, and the length can be
changed by the subroutine, then a length variable for the string is also passed.

The input values need not be validity checked by the subroutines to insure that they fall within
the proper ranges.

6.5.1 CATNUM (conCATenate NUMber to string)

This subroutine is used to concatenate the decimal character representation of a number to the end
of a string. The invocation is

CALL CATNUM(A,ALEN,N)

where
A (in/out) is a varying length string;
ALEN (in/out) is the current length of A;
N (in) is an integer variable whose value is in the range 0 through 99999.

The value of N is converted to a five digit decimal character representation. Leading zeroes are
supplied if necessary. The resulting five characters are concatenated to the end of the string A. The
length of A, ALEN, is increased by five.

Example:
Before: A ’IF (X.LT.3) GO TO ’
ALEN 18
N 973
After: A ’IF (X.LT.Y) GO TO 00973’
ALEN 23

6.5.2 CATSTR (conCATenate STRing to string)
This subroutine is used to concatenate one string to another. The invocation is
CALL CATSTR(A,ALEN,B)

where
A (in/out) is a varying length string;
ALEN (in/out) is the length of 4;
B (in) is a string whose full length is used.

The character string represented by B is concatenated to the right hand end of A thus increasing
the length of A by an amount equal to the length of B. If B is of length zero, A will remain unchanged.

Example:
Before: A 'TF (X.LT.Y)’
ALEN 11
B > GO TO
After: A ’TF (X.LT.Y) GO TO °

ALEN 18

36 FLECS — A Structured Fortran Preprocessor

6.5.3 CATSUB (conCATenate SUBstring to string)

This subroutine is used to concatenate a portion of one string to another. The invocation is
CALL CATSUB(A,ALEN,B,START,LENGTH)

where
A (in/out) is a varying length string;
ALEN (in/out) is the length of 4;
B (in) is a string;
START (in) is a positive integer representing the position of the first character of the substring

of B to be concatenated to the string A;
LENGTH (in) is the length of the substring of B be concatenated to string A.

The substring of B beginning with the character having position START and of length LENGTH is
concatenated to the end of string A. The length of A is increased by LENGTH. If LENGTH equals 0, A
is not altered.

Example:

Before: A ’IF (.NOT.’
ALEN 9
B WHILE (X.LT.Y) I = I+1°
START 7
LENGTH 8

After: A >TF (.NOT.(X.LT.Y)’
ALEN 17

6.5.4 CHTYP (CHaracter TYPe)

In scanning the Flecs source program, the translator must be able to identify the syntactic category
to which the characters it encounters belong. For the purposes of the translator, only the following
syntactic categories are required. Each type is followed by the internal code used by the translator.
The code, 8, is used for signifying end of line.

Letter (1) one of the characters “@”, “®", “@” or “@”, “©®”, “@".
Digit (2) one of the characters “@”, “@”,..., “©@”.

Hyphen (3) the hyphen or minus sign, “Q”.

Left parenthesis

@) “0°
Right parenthesis

() “0.
Blank (6) the blank or space character or any other white space character such as the ASCII

horizontal tab.
Equals 9) “@”7.
Comma (10) “Q”.
Other (7) any character not falling in one of the other categories.

The invocation for the function CHTYP is
I = CHTYP(CH)
where

Chapter 6: Flecs Implementation 37

CH (in) is an integer representing the character code for the character to be classified;

CHTYP (out) is an integer in the range 1 through 10 giving the syntactic category of the
character according to the scheme described above.

Note that the value of CH represents the character as its integer code value, not as a Hollerith
value. For example, the space or blank character would be represented by a value of 32 (decimal)
40 (octal) for 7-bit ASCII and 64 (decimal) 40 (hex) for 8-bit EBCDIC.

This function is of course character set dependent and must be rewritten for a new machine.
Examples: (Assuming 32 is the code for space and 49 is the code for “17.)

Before: CH 32
After: CHTYP 6
Before: CH 49
After: CHTYP 2

6.5.5 CPYSTR (CoPY STRing)

This subroutine is used to copy a string without modification into a new location. The invocation
is

CALL CPYSTR(A,ALEN,B)

where
A (out) is a varying length string;
ALEN (out) is the length of A;
B (in) is a string.

The string A is set equal to the string B. The string B is not disturbed.

Example:
Before: B GO TO 97781’
After: A G0 TO 97781’

ALEN 11

6.5.6 CPYSUB (CoPY SUBstring)

This subroutine is used to create a string which is equal to a substring of a second string. The
invocation is

CALL CPYSUB(A,ALEN,B,START,LENGTH)

where
A (out) is a varying length string;
ALEN (out) is the length of A;
B (in) is a string;
START in) is a positive integer representing the position of the first character of the substring

of B to be copied;
LENGTH (in) is the length of the substring to be copied.

The string A is set equal to the substring of B of length LENGTH starting with the character
position START. The initial value of A is ignored. The length of the string A becomes LENGTH,
including the case where LENGTH = 0.

Example:

38 FLECS — A Structured Fortran Preprocessor

Before: B = ’ IF (X.LT.Y)’
START = 9
LENGTH = 8

After: A = > (X.LT.Y)’
ALEN = 8

6.5.7 HASH (HASH function)

This integer function subprogram is used by the translator to compute a hash code from a string.
The code is used in maintaining hash coded symbol tables. The invocation is

I = HASH(A,PRIME)

where
A (in) is a string;
PRIME (in) is a positive prime integer;
HASH (out) is an integer in the range 0 through PRIME-1 which has been computed by hashing

the character string A.

Example: (An example is somewhat meaningless, but here’s one anyway.)

Before: A ’PERFORM-INITIALIZATION’
PRIME 53
After: HASH 11

6.5.8 MAKEST (MAKE STring)

In the original version of the Flecs translator, integer arrays were used to store all character strings.
In order to simplify the conversion of Flecs to use Fortran-77 character strings, the old array names
were preserved as were their effective lengths. MAKEST is used to copy the string constant to the
string variable holding it, and it verifies that the length matches correctly if the preprocessor
variable, DEBUG, is turned on. It is used only in the initialization phase of the translator. The
invocation is

CALL MAKEST(STRING,ST)

where

STRING (out) is the copy of string made by MAKEST;

ST (in) is the string being copied.
Example:
Before: ST = ’WHEN’

After: STRING = ’WHEN’

6.5.9 PUTNUM (PUT NUMber)

This subroutine is used to place the decimal representation of an integer at the beginning of a string
which has already been created. The invocation Is

CALL PUTNUM(A,N)

where
(in/out) is a string;

N (in) is an integer in the range 0 through 99999.

Chapter 6: Flecs Implementation 39

The decimal character representation of the value of N, padded if necessary with leading zeroes
to a length of five characters, replaces the first five characters on the string A. The length of the
string is not checked or altered by this process. Only the first five characters of the string are
altered.

Examples:
Before: A= CONTINUE’
N = 740
After: A = ’00740 CONTINUE’

Before: A = HI MOM’
N 91983
After: A = ’91983M’

6.5.10 STREQ (STRing EQuality)

This logical function is used to test the equality of two strings. The comparison is made without
regard to upper or lower case. The invocation is

CALL STREQ(A,B)

where
A (in) is a string;
B (in) is a string;
STREQ (out) is a logical value which is set . TRUE. if the two strings are identical in length and
content and .FALSE. otherwise. Case is ignored.
Examples
Before: A = ’REPEAT’
B = ’repeaT’
After: STREQ = .TRUE.
Before: A= >UNTIL’
B = ’UNTILL’
After: STREQ = .FALSE.

6.5.11 STRLT (STRing Less Than)

This logical function is used to determine whether or not one string is lexicographically less than
another. The comparison is made without regard to upper or lower case. The invocation is

L = STRLT(A,B)

where
A (in) is a string;
B (in) is a string;
STRLT (out) is a logical value which is set to . TRUE. if the character string A is lexicographically

strictly less than the character string B. The collating sequence of the underlying
character set is used. Case is ignored.

Examples:

40 FLECS — A Structured Fortran Preprocessor

Before: A = >CANCEL-THE-ORDER’
B = >CANCEL-WORK-REQUEST’
After: STRLT = .TRUE.
Before: A = >CANCEL-THE-ORDER’
B = >CANCEL-THE-ORDER’
After: STRLT = .FALSE.
Before: A = >CANCEL-WORK-REQUEST
B = ’cancel-the-order’
After: STRLT = .FALSE.

6.5.12 STRUP (STRing UPpercase)

All comparisons in the translator are done in a case insensitive manner. This is achieved by
converting all alphabetic characters to upper case before comparison. This conversion is done by
STRUP.

The invocation of STRUP is
CALL STRUP(A)

where

A (in/out) is a character string whose lower case alphabetic characters are to be converted
to upper case.

Example:

Before: A ’This is a test’
After: A = ’THIS IS A TEST’

6.5.13 TRIM (TRIM string of blanks)

TRIM removes the trailing blanks off of a string. This is done by reducing the length until a non-
blank character is found or the beginning of the string is reached. No characters in the string are
changed.

The invocation of TRIM is
CALL TRIM(A,ALEN)

where
A (in) is a varying length character string;
ALEN (in/out) is its length.
Example:
Before: A = G0 TO 90 ’
ALEN = 12
After: ALEN = 8

Chapter 6: Flecs Implementation 41

6.6 I/0 Interface

The Flecs translator communicates with its environment through five subroutines; OPENF, GET,
PUT, CLOSEF, and FLSTOP. Briefly, these subroutines correspond to determining if a file is to be
processed and initializing it if it is (OPENF); reading in Flecs source statements (GET); writing
translated Fortran statements, listing lines and error messages (PUT); performing any file closing
actions necessary after processing of a file (CLOSEF); and terminating execution (FLSTOP). By
supplying an appropriate version of these subroutines, the Flecs translator may be adapted to a
wide variety of batch or time sharing environments without altering the logic of the translator itself.
The following discussion is based on the assumption that the implementor does not wish to alter
the logic of the translator. Hence, the phrase “must not...” should be taken to mean “must not,
unless you wish to alter the translator,. ..”

The following sections discuss various topics of interest to programmers who wish to write their
own I/0 subroutines.

6.6.1 Files and Devices

The basic task of the Flecs translator is to read an input file containing one or more Flecs sub-
programs and to produce two output files; one containing the translated Fortran version of the
subprograms and the other containing the indented listing of the Flecs subprograms together with
any error messages, and cross reference tables. Let us refer to these files as follows:

Flecs/in the file containing the Flecs source.
Fort/out the file containing the Fortran translation.
List/out the file containing the Flecs listing.

In a simple batch processing environment, these three files might be the only files to which
the translator has access. The Flecs system would open the Flecs/in file, process it to produce
the Fort/out and List/out files, close these three files and then terminate execution. In a more
ambitious Flecs implementation, one might wish to process several different Flecs/in files and
produce the corresponding output files before terminating execution. In the latter case, one might
expect to find a control file containing information which informs the Flecs system of the number
of Flecs/in files to be processed and indicates how these files should be accessed. One might also
wish to produce an annotated copy of the control file for inclusion in the printed output. Let us
refer to these two additional files as follows:

Control/in
the file containing control information.

Control/out
the file containing an annotated listing of the control information.

In some cases it would be desirable to produce only one listing file in which case List/out and
Control/out would actually be the same file although they would correspond to logically different
functions.

In a time sharing environment, the basic three files; Flecs/in, Fort/out, and List/out; would
still exist. The function of the Control/in and Control/out files might be replaced by an interactive
dialogue via the time sharing terminal. In addition, it is common practice for error messages
produced by the translation process to be routed to the terminal in addition to List/out, so that
they may be brought to the immediate attention of the user.

6.6.2 Classes of Input/Output

The Flecs translator proper has no direct knowledge of the Control/in or Control/out files or of
a time sharing terminal. All communication with these files or devices is under control of the

42 FLECS — A Structured Fortran Preprocessor

I/O subroutines. The translator program itself is concerned with four classes of I/O. One of these
classes is input of Flecs source lines. The other three are output classes. In the discussion to follow
it will prove useful to have names for these four classes as given below.

Flecs This is the only input class and corresponds to the current Flecs/in file.
Fort This is an output class which corresponds to the current Fort/out file.
List This is an output class which corresponds to the current List/out file and is used for

all lines of the listing not involving errors.

err this is an output class used when errors are detected. It always corresponds to the
List/out file and may also correspond to the user’s time sharing terminal or to Con-
trol/out if errors are to be produced there as well as on the listing.

When the Flecs translator wishes to read a line of class Flecs, it uses the subroutine GET. When
it wishes to write a line of output in any of the remaining three classes, it calls PUT and informs
PUT of the desired class of output.

6.6.2.1 Class Flecs

The Flecs translator expects the strings given it as the result of a call to GET to be in a standard
format as follows:

1. Columns 73-80 are not included in the string. The information in these columns may not be
passed through the translator. (With the possible exception of line number information. see
Section 6.6.3 [Line Numbers|, page 43) If it is desired to have some or all of the information in
these columns appear on various output lines, the information must pass directly from GET to
PUT, via COMMON perhaps, and appended to the output lines as they are written. In this case
GET and PUT can use the fact that the translator passes line numbers to correlate the input
stream with the output streams.

2. Trailing blanks are to be trimmed from the string before it is given to the translator. The logic
of the translator is sensitive to this point.

3. Blank lines are permitted and should be presented to the translator as a string of length 0.
They appear on List/out but not in Fort/out.

4. The conventions for comment cards, the statement number field and the continuation column
are as in ANSI Standard Fortran. That is, a comment is designated by a “(©” in column
1. The statement number must appear in columns 1 through 5. The continuation character
must appear in column 6 and the statement must begin in column 7 or later. If special control
characters and conventions are used at the installation, the lines must be reformatted before
being presented to the translator for processing. For example, the PDP-10 uses the ASCII
horizontal tab character to allow the programmer to tab over to the continuation or statement
field. The PDP-10 version of GET replaces these tab characters by an appropriate number of
blanks. See also note 7 below concerning uses of columns 1 through 6.

5. The character set used in columns 7-72 may be highly installation dependent. In particular,
horizontal tabs may appear in these columns. The logical dependency of the translator upon
the character set is discussed in Section 6.3 [Character String Conventions|, page 32, and
Section 6.5.4 [CHTYP], page 36.

6. The Flecs translator expects only one statement (or continuation thereof) per line. Installa-
tions which employ multiple statement per line conventions may pass such lines through the
Flecs translator provided they contain no Flecs constructs. They will be treated by the Flecs
translator as a single Fortran statement and will be passed directly to classes Fort and List.

7. Installations which employ non-standard uses of column 1 through 6 (e.g. , D for Debug or
D for double precision, etc.) may pass such statements through the Flecs translator without
rewriting its logic. This is so because the translator examines each line to see if it is a comment

Chapter 6: Flecs Implementation 43

or a recognizable Flecs construct. If it is neither, the translator assumes it is a valid line of
Fortran and passes it on to the compiler unaltered. Columns 7 through 72 of such lines will be
indented on the listing. Since the translator stops scanning as soon as it finds a non-standard
use of columns 1 through 6, it is not possible to apply non-standard uses of columns 1 through
6 to lines containing Flecs constructs.

If form feed or new page control characters are sensed in Flecs/in, they may be passed directly
to List/out and Fort/out as appropriate. They should not be presented to the translator.

6.6.2.2 Class Fort

The lines presented by the translator for output in this class are either direct copies of input lines
presented to the translator as class Flecs, standard ANSI FORTRAN statements, or IF statements
containing an expression which has been generated in part from expressions supplied on an input
line. Flecs occasionally generates a Fortran statment internally which extends beyond col 72. When
this occurs the statement is broken at columns 72-73 and the remainder is continued on the next
line using a “@®” in column 6.

6.6.2.3 Class List

Class List output is intended to be used to create a listing of the Flecs program for human con-
sumption. In particular, carriage control characters should be supplied by PUT if this is appropriate.
(Normally, single spacing will be used, but see the comment above about new page control under
Class Flecs and the comment below about overprinting.) In installations supporting line numbered
files this file would normally not be line numbered. The line numbers supplied by the translator
appear on many of the lines of the listing but are present as textual characters, not as true line
numbers.

The strings presented for output under this class normally appear in List/out beginning in
column 7. Column 6 contains a blank and columns 1-5 contain one of the following three types of
character strings.

1. 5 blanks.
2. The line number supplied by the translator.
3. The line number supplied by the translator overprinted by 5 hyphens (minus signs).

See Section 1.4 [Indentation], page 8, for examples of how these three options are used in the
listing of a program.

The translator informs PUT of the option desired for each string via one of the arguments to
PUT.

If for some reason, overprinting is not possible, it may be omitted but an alternate convention
for graphically indicating an ignored line should be adopted.

6.6.2.4 Class Err

This class is identical to class List except that the lines go not only to List/out but also to the user
s time sharing console or to Control/out if these exist.

6.6.3 Line Numbers

The Flecs translator expects every line of class Flecs supplied to it by the subroutine GET to be
associated with a line number in the range 1 to 99999. The line number is placed to the left of the
line on the listing produced by the translator and is associated with all error messages and Fortran
code produced which correspond with that input line. In addition, the second column of numbers
in the listing specifies the line count in the Fortran output file. In this way, the Flecs source lines
may be correlated with error messages from the Fortran compiler provided the compiler reproduces
the line numbers in its error messages.

44 FLECS — A Structured Fortran Preprocessor

The actual values of the line numbers are of no importance to the logic of the Flecs translator
as long as they are in the range 1 to 99999. (The value zero is used for special purposes within
the translator.) The translator simply copies these numbers from one place to another. Although
convention dictates that the line numbers be increasing in value, the translator does not check for
this and will not be bothered by non-increasing, duplicate, decreasing, or random ordering. Such
orderings would tend, of course, to destroy the utility of the line number as a means of relating the
Flecs and Fortran sources.

The line number may be obtained by GET in one of at least four ways. The choice of the method
to be used is up to the implementor.

1. Many time sharing installations have a specially formatted type of file called a line numbered
file where each line comes ready equipped with a five digit line number. These line numbers are
useful in connection with certain text editors. If Flecs/in is such a file, then the line number
can and should be obtained from the file.

2. If the file being read is nol a line numbered file in the sense of (1) above, but does contain 80
column card images with five digit user-supplied sequence numbers appearing in, for instance,
columns 76-80, then these numbers should be used as the line numbers.

3. Some implementation dependent scheme other than the above may be chosen to allow the user
to number his source lines.

4. If the line being read does not come equipped with a user or system supplied line number,
GET could supply a constant value as the line number. This would, however, totally defeat
the utility of the line number as described in Section 1.2 [Correlation of Flecs and Fortran
Sources|, page 6. A better scheme is to have GET increment the last line number it supplied to
the Flecs translator by a constant each time a line is read.

A combination of the above methods is often useful. For example, the PDP-10 installation
uses the line number if a line number file is supplied. Otherwise, it creates its own numbers by
incrementing. A card image oriented batch system might well use columns 76-80 whenever these
contain digits, otherwise increment the last number supplied. In this way, unnumbered cards could
be inserted into a numbered deck and would receive reasonable sequential numbers since the last
card with a number would serve as a basis for the numbering of the following blank cards.

The Flecs translator associates the line number supplied by GET during input with all Fortran
statements generated as a result. Since one line of input may produce several lines of output,
the same number may appear more than once in the output. The actual placement of these
lines numbers is under control of PUT. Normally, duplicate line numbers which appear on output
will cause no problems. In time sharing installations which have line numbered files and Fortran
compilers which list line numbers along with errors, it is desirable to have Fort/out be a line
numbered file. The file thus created will contain duplicate line numbers. This may or may not be
noticed by the compiler. On the PDP-10, for instance, the F40 compiler is insensitive to duplicate
line numbers. If the compiler objects to duplicate line numbers, or if the installation does not
support duplicate line numbers, the line numbers supplied to PUT may be placed in columns 76-
80. Hopefully, the numbers will find their way into the compiler s error messages from there. An
alternative is to have PUT check outgoing line numbers for failure to be sequential and reassign
them if necessary. This will however defeat the strict correspondence between listing and Fortran
source numbers.

6.7 I/O Subroutines

The five subroutines described in this chapter are interrelated and may actually be five entry points
to one subprogram or may communicate information among themselves via labeled COMMON. It is
assumed the reader is already familiar the I/O interface.

Chapter 6: Flecs Implementation 45

6.7.1 OPENF (OPEN Files)

This subroutine is called by the translator to determine whether or not to process a file of Flecs
source code and to perform any file initialization necessary in case a file is to be processed. It may
also initialize data values available to GET, PUT, and CLOSEF such as initial default line numbers
and Fortran I/O unit numbers.

The subroutine is invoked by
CALL OPENF (CALLNO,DONE,SVER)
where the arguments are as follows:

CALLNO (in) is an integer supplied by the translator to inform OPENF of the number of times it
has been called during this execution of the translator. The first time OPENF is called
this value will be 1. On each successive call the value will increase by one. The utility
of this argument is discussed below.

DONE (out) is a logical value to be set by OPENF each time it is called. A value of .TRUE.
indicates that there are no more input files to be translated, while .FALSE. indicates
that another (or the first) input file is to be translated.

SVER (in) is a string containing the Flecs revision number which is provided to OPENF so that
it may be passed on to the user of Flecs via Control/out or via a time sharing terminal,
if desired.

In a simple batch processing situation where Flecs/in, Fort/out, and List/out always correspond
to fixed unit numbers which require no opening action and where multiple input files are never
considered, the following routine would be adequate since no initialization is required.

SUBROUTINE OPENF (CALLNO,DONE,SVER)
INTEGER CALLNO

LOGICAL DONE

WHEN (CALLNO.EQ.1) DONE = .FALSE.
ELSE DONE = .TRUE.

END

46 FLECS — A Structured Fortran Preprocessor

In a batch processing situation where multiple files may be processed under control of Control/in
the following sketch might be appropriate.

SUBROUTINE OPENF (CALLNO,DONE,SVER)
**x*declarations go here **x*

IF (CALLNO.EQ.1)
INITIALIZE-CONTROL-IN
INITIALIZE-CONTROL-0UT
...FIN
REPEAT UNTIL (READY)
ATTEMPT-TO-READ-NEXT-FILE-SPECIFICATION
CONDITIONAL
(ENDFIL)
WRITE-FINAL-MESSAGE-TO-CONTROL-0UT
CLOSE-CONTROL-IN
CLOSE-CONTROL-0UT
READY = .TRUE.
DONE = .TRUE.
...FIN
(BADSPECS)
WRITE-BAD-FILE-SPECS-TO-CONTROL-0UT
READY = .FALSE.
...FIN
(OTHERWISE)
OPEN-APPROPRIATE-FILES
INITIALIZE-SUBROUTINES-GET-AND-PUT
READY = .TRUE.
DONE = .FALSE.
...FIN
. ...FIN
..FIN

**%* internal procedure definitions go here *x*x*

END

Chapter 6: Flecs Implementation 47

In a time sharing environment where the user is queried about which files he wishes to translate,
the following sketch might be appropriate:
SUBROUTINE OPENF (CALLNO,DONE, SVER)

**x*declarations go here **x

IF (CALLNO .EQ. 1) TYPE-INTRODUCTORY-MESSAGE

READY = .FALSE.

REPEAT UNTIL (READY)
GET-FILE-NAME-OR-QUIT-RESPONSE-FROM-USER
WHEN (QUIT)

TYPE-GOODBYE-MESSAGE
READY = .TRUE.
DONE = .TRUE.
...FIN
ELSE
CHECK-VALIDITY-AND-EXISTENCE-OF-FILE
CONDITIONAL
(INVALID)
TYPE-BAD-NAME-MESSAGE
READY = .FALSE.
...FIN
(NOEXIST)
TYPE-CANNOT-FIND-FILE
READY = .FALSE.
...FIN
(OTHERWISE)
OPEN-FLECS-IN
OPEN-FORT/QUT
OPEN-LIST/QUT
INITIALIZE-SUBROUTINES-GET-AND-PUT
DONE = .FALSE.
. READY = .FALSE.
. ...FIN
. ...FIN
. ...FIN
..FIN

**kkxprocedure declarations go here *x*x*

END

If OPENF returns a value of DONE = .TRUE. to the translator, then the translator will make no
further calls to the I/O subroutines and will execute a call to FLSTOP which will return to operating
system, see Section 6.7.5 [FLSTOP], page 49. It may be desirable in some circumstances to have
OPENF terminate execution of the translator directly. See the discussion below of how CLOSEF may
be used to initiate a Fortran compilation following processing of a file. If multiple files are to be
processed then it may be desirable for OPENF to initiate the Fortran compilations after all the Flecs
files have been translated. OPENF may also analyze error information accumulated by CLOSEF and
make special efforts to inform the operating system if severe errors have been encountered. For
example, under OS on the IBM 360/370, a condition code can be used to block a following jobstep
in which Fortran compilation was to follow.

48 FLECS — A Structured Fortran Preprocessor

6.7.2 GET (GET input)

This subroutine is called oy the Flecs translator each time it desires to read a line of Flecs source
from Flecs/in. The invocation is

CALL GET(LINENO,STRING,ENDFIL)
where

LINENO (in/out) is an integer variable to be set to an appropriate line number value by GET, see
Section 6.7.2 [GET], page 47. The translator initializes LINENO to zero before processing
a file. There after it does not alter the value of LINENO. Thus, except for the first call,
the value of LINENO upon entry to GET is the number assigned to the previous line.

STRING (out) is a string of capacity 72 which is to be set equal to the contents of the next line
from Flecs/in. (See discussion of class Flecs in Section 6.6.2.1 [Class Flecs|, page 42.)

ENDFIL (in/out) is a logical variable which is always .FALSE. upon entry to GET. It is to
be set to .TRUE. upon encountering an end-of-file condition in Flecs/in. When GET
returns with a value of ENDFIL = .TRUE., the translator ignores the values of LINENO
and STRING which are returned. The translator contains a loop which is terminated
only by the setting of ENDFIL = .TRUE. by GET.

Most of the details concerning the requirements imposed upon GET have been covered in pre-
ceding sections, especially in Section 6.6.3 [Line Numbers|, page 43, and Section 6.6.2 [Classes of
Input/Output], page 41. The implementor may consult the Flecs version of GET supplied with the
standard Flecs implementation to see an example of the logic involved.

6.7.3 PUT (PUT out strings)

This subroutine is called by the Flecs translator each time it desires to output a line of information
in one of the three classes Fort, List, or Err. The invocation is

CALL PUT(LINENO,STRING,IOCLAS)
where

LINENO (in) is an integer value supplied to PUT by the translator. The value of this integer
determines how the line number field is to be displayed in the output. For output of
class Fort, the value will always be in the range 1 to 99999 and should be included in
the output in the manner chosen by the installation. (See discussion of Line Numbers
in Section 6.6.3 [Line Numbers], page 43.) For output of classes List and Err, the value
may be positive, zero, or negative and is used both to represent the value of the line
number and to indicate which of the three formats is to be used. Specifically:

— A zero value indicates that no line number should be displayed, that is, columns
1-5 should be blank.

— A positive value indicates that the line number should be displayed in columns 1-5
as a five digit number.

— A negative value indicates that its absolute value should be displayed in columns
1-5 as a line number but should be overprinted with hyphens.

STRING (in) is a string supplied by the translator which represents the characters to be displayed
beginning in column 7 of the listing.

I0CLAS (in) is an integer value supplied by the translator indicating which output class is to
be used. The following codes are used:
1 represents Fort
2 represents List

3 represents Err

Chapter 6: Flecs Implementation 49

6.7.4 CLOSEF (CLOSE Files)

This subroutine is called oy the Flecs translator after processing of all subprograms in an input
file have been completed. It is to perform any necessary file closing actions and will then usually
return control to the translator. The invocation is

CALL CLOSEF(MINCNT,MAJCNT)
where

MINCNT (in) (MINor error CouNT) is an integer supplied by the translator which indicates how
many minor errors were detected by the translator in processing the file.

MAJCNT (in) (MAJor error CouNT) is similar to MINCNT but counts major errors. A value of
zero indicates no errors. The special value -1 is used to indicate a symbol table overflow
in the translator. In this case, CLOSEF may terminate the run or return to the translator
which will immediately terminate the run. (See procedure GIVE-UP in the translator.)

The error count information is provided so that it may be included as a message to the user via
Control/out and/or List/out if desired and also so that it may be used to control conditionally the
initiation of a Fortran compilation. Excess FINs anywhere in the program or missing FINs prior to
a TO or END are minor errors. All other context and all syntax errors are considered major errors.

In a simple batch processing system where Flecs/in, Fort/out, and List/out always correspond
to fixed unit numbers, where only one file will be processed on any single run of the translator and
where closing of files is not necessary (or is done by the system), the CLOSEF routine can consist
simply of a single RETURN statement.

If the Flecs installation has been set up to allow automatic Fortran compilation to follow Flecs
translation and if only one file per run of the translator is desired, then CLOSEF can issue the
appropriate system calls to initiate such a compilation. The initiation of compilation can also be
made conditional upon the values of MINCNT and MAJCNT.

If more than one file is to be processed per run of the translator and automatic Fortran compi-
lation is also desired, then there are at least two options. The operating system may allow control
to be transferred to the Fortran compiler from CLOSEF and be returned upon completion. In the
more likely event that this is not possible, CLOSEF may stack the error counts away in a common
block and the initiation of the Fortran compilations for all the files may be performed by OPENF
when it determines that no more files are to be processed.

6.7.5 FLSTOP (FLecs STOP)

Termination of the translator is performed by FLSTOP. Depending on the operating system, it will
issue an appropriate EXIT call that will transmit to the operating system the success or failure of
the translation. It is invoked as follows:

CALL FLSTOP(GMINER,GMAJER)
where

GMINER is the total number of minor errors seen by the translator.

GMAJER is the total number of major errors seen by the translator.

50

FLECS — A Structured Fortran Preprocessor

Chapter 7: Installation and Modification 51

7 Installation and Modification

The process of installing and modifying the Flecs system is straightforward given the fact that
Flecs is written in itself, and must be bootstrapped in order to install it on a new machine. The
distribution contains several different Fortran translations of the translator in the hope that one of
them will compile and link on new machines.

There are very few machine dependencies in the Flecs translator. The most significant is the
scanning of the command line. Many machines have Fortran functions, TARGC and GETARG, which
permit the command line to be read. However, for those machines that do not, there is a dummy
version of these subroutines in the file, ‘argc.f’, which will result in Flecs reading from standard
input to get the files to translate. There is a shell script, ‘flecs.sh’, which can be used to emulate
the behavior of reading from the command line.

The makefile for Flecs attempts to provide a number of different targets for building pieces of
the translator. However, it will be necessary to review its operations and do some of them “by
hand” on some new machines.

The normal compilation of Flecs depends upon using a C Preprocessor in order to select machine
dependent statements. If you do not have one specially geared for Fortran, then you can use the
one associated with the C compiler. A Fortran C Preprocessor is available for free upon request
from Robert E. Bruccoleri.

The installation procedure for new machines consists of the following three phases:
1. Examining the standard version of the translator.
2. Creating an initial working version of the translator;
3. Making any further modifications deemed desirable.

These three phases are discussed below.

Note: In going to a machine on which the short form of assigned GO TO is not valid, it is vital
that the Fortran version of the translator being moved has itself been translated using the variable,
COGOTO, being set to . TRUE., see Section 6.4 [Translation Parameters|, page 32.

7.1 The Standard Version

The materials supplied in a distribution of the standard Flecs system consist of a manual for
using and maintaining the Flecs translator and the following machine readable files stored in an
appropriate archive format. Note that on VMS systems, files with extension, ‘.f’, would have an
extension of ‘.for’.

‘descrip.mms’
A ‘Makefile’ suitable for use with the VAX/VMS layered product, MMS, the Module
Management System. It has most of the functionality of the Unix ‘Makefile’.

‘flclean.com’
A VMS procedure for cleaning up after Flecs files are translated and compiled.

‘flecs.flx’
Flecs source code for the main program of the translator.

‘flecs.f’ Fortran source code for the main program part of the translator. This file is automat-
ically generated by the translator from ‘flecs.flx’.

‘flecs.texinfo’
Texinfo source for this manual.

‘flecs.txt’
Outline of a short course on Flecs.

52 FLECS — A Structured Fortran Preprocessor

‘flecsubs.flx’
Flecs subroutine library. Most machine dependencies are found in here.

‘flecsubs.f’
Fortran translation of ‘flecsubs.flx’.

‘flecsp.f’
A more portable, but less efficient version of the translator.

‘flecsbsp.f’
A more portable, but less efficient version of the Flecs subroutine library.

‘flecsdoc.texinfo’
Texinfo source for this manual. Texinfo is a language for specifying TeX manuals and
GNU Emacs Info files, see section “Overview” in The GNU Texinfo Manual.

‘flecsdoc.dvi’

A TgX DVI file for this manual.

‘flecsdoc.ps’
A Postscript file for this manual.

‘flecsdoc, flecsdoc-1, flecsdoc-2, flecsdoc-3’

Info files for Flecs. These can be installed in the ‘info’ directory of your GNU Emacs
files.

‘flifix.flx’
A program to add Fortran listing line numbers to a Flecs listing. This program was
written only for VAX/VMS, and is currently broken. Since FLECS now outputs the
sequential numbering of output Fortran lines, ‘f1ifix’ is less necessary.

‘makefile.gen’
Predecessor makefile for Flecs. Combine this file with one of the ‘machine.make’ files
to get the correct macros for the compilers and other installation parameters.

‘x.make’ A number of macro definitions for different machines are provided.

‘pflecs.f’
An assemblage of ‘flecsp.f’, ‘flecspsp.f’, and ‘argc.f’ that can be compiled to make
a version of Flecs that does not read the command line for the files it will translate.
‘readme.txt’

A short description of Flecs

7.2 The Initial Working Version

Having obtained the standard version of the Flecs system, the next phase of the installation proce-
dure is to create an initial working version of the Flecs system which runs on the local computer.
Until this initial version is running, all modifications to the system source must be made in dupli-
cate, once to the Fortran source and once to the Flecs source. (Except, of course, if the implementor
has access to a working Flecs translator on another machine.) The initial translator system can
then be used to produce automatically the corresponding Fortran source. Therefore, in this phase
only those modifications absolutely necessary to produce a working translator are to be performed.
Modifications related to efficiency or ease of use can be deferred to the next phase. The proce-
dure described below is designed to guide the programmer in obtaining a working version of the
translator as quickly as possible.

Chapter 7: Installation and Modification 53

7.3 Procedure for Creating the Initial Version

Please read the entire procedure through before beginning.
1. Make a copy of the machine readable files provided. We shall refer these as the reference set.

2. Read Chapter 6 [Flecs Implementation], page 31, and Section 6.6 [I/O Interface], page 41, for
a description of the implementation of the translator.

3. Review the makefiles, ‘makefile’ or ‘descrip.mms’, and modify them as required by your
installation.

4. Compile ‘flecs.f’ and ‘flecsubs.f’, and link together.

5. If those compilations fail because of the assigned GO TQ0’s, or because the line numbers are too
large, then copy ‘flecsp.f’ to ‘flecs.f’, and ‘flecsbsp.f’ to ‘flecsubs.f’, and try again.

6. If these compilations fail, modify the translator as necessary to get it running. Keep a record
of all changes made.

7. Uses ‘flecs.flx’ and ‘flecsubs.flx’ as test cases for your translator. Unless the translation
parameters have been changed, your local version of the translator should be able to reproduce
the reference copies of the translations.

8. Edit ‘flecs.flx’ and ‘flecsubs.flx’ to reflect any changes you made to ‘flecs.f’ and
‘flecsubs.f’.

9. Run the translator again on your modified versions of the sources, compile, and link to produce
a native translator. The makefile’s may be used for this purpose. Verify the operation of the
native translator by translating ‘flecs.flx’ and ‘flecsubs.flx’ again.

10. Any further modifications of the translator should be made on the ‘.f1x’ versions of the files.

11. Install the Flecs translator. The install target of the makefiles can be used. On Unix
systems, simply copy the translator into a local ‘bin’ directory that users have on their path.
On VMS systems, a foreign command definition for Flecs should be placed in the appropriate
‘LOGIN.COM file.

7.4 Documentation

Machine readable documentation for the Flecs translator is provided as part of the package. In
order to regenerate files from the ‘flecsdoc.texinfo’, you will need to install TEX, a version
of ‘texinfo.tex’ with a version number greater than or equal to 2.36, ‘texindex.tex’, and
‘makeinfo’. TEX is available from a number of sources, and the remaining utilities are available
from the Free Software Foundation.

7.5 Desirable Modifications

Having obtained the initial working version of a Flecs translator, the programmer may now proceed
to make any further changes to the translator deemed desirable. Some of these changes are discussed
briefly below.

7.5.1 Efficiency

If the operation of the translator is slow compared to Fortran compilation, suitable performance
monitoring tools should be employed to find the bottlenecks. Rewriting these routines in C or
assembler should help, but short test cases should be used to verify that improvements will really
work.

7.5.2 Convenience

The convenience of using the translator is primarily a function of how easily accessible it is within
the operating system and how little it disrupts the programmer’s previously established working

54 FLECS — A Structured Fortran Preprocessor

habits. Ideally the Flecs system would be transparent to the programmer, allowing him to believe
he was simply using features of the Fortran language which he had never discovered before. In
practice much can be done to give the Flecs translator a low profile, but like any preprocessor, it
will never become completely transparent. Use of the Unix utility, make, or of the VMS utility,
MMS, can be very helpful.

Some of the problems of preprocessor transparency have been attacked in the design of the
system, primarily in the. use of line numbers to relate Flecs source to Fortran source and the fact
that there is a very close resemblance between the two languages. Other problems can be reduced
by appropriate adaptation or modification of the system. Some problems and possibilities for their
solutions are sketched below.

The extra processing step represented by the translator of Flecs to Fortran can be annoying if
it requires much extra effort on the part of the programmer. Appropriate use of the job control
language for the operating system may reduce this burden. In the best case the Flecs translator will
appear to be just another compiler available in the operating system and will be invoked in a manner
similar to invoking the Fortran compiler. Invoking the Flecs translator should initiate both the
Flecs translation and the subsequent Fortran compilation. Such a change might be accomplished by
simply establishing appropriate job control procedures in a procedure library or file. See Section 6.6
[I/O Interface], page 41, which contains many suggestions on how modifications of the I/O routines
can be used to make the Flecs system blend more smoothly into the system.

The Flecs translator is able to adapt to a wide variety of Fortran dialects simply because it
passes most statements through without alterations and for those it does alter, it proauces ANSI
standard equivalents. Nevertheless some features such as special conventions for columns 1 through
6 or for multiple statements per line will cause problems if used with Flecs constructs. Some of
these problems may be circumvented by pre- and post-processing of the source file using GET and
PUT. (See discussion of class Flecs in Section 6.6.2 [Classes of Input/Output], page 41.)

Many of the programming aids which are available for use by the Fortran programmer such
as cross reference listings and special debugging techniques become clumsy when used with Flecs
because of the need to work through the intermediate Fortran listing. No general solution to such
problems can be offered. Frequently nice solutions can be obtained only by making modifications
to some of the other programs involved. For example, persuading compilers, cross reference listers,
and interactive debuggers that they should communicate in line numbers not internal or external
statement numbers.

Index

Index

A

Ascii Character Setcoiiiiiie... 32

B

Blank Trimming.................. 40
Blanks..... 25
Body ... 21

C Preprocessoro 32
Case Conversionooueieiin... 40
CATNUM (conCATenate NUMber to string).......... 35
CATSTR (conCATenate STRing to string)........... 35
CATSUB (conCATenate SUBstring to string) 36
Character Processing Subroutines................. 34
Character String Conventions. 32
Character Type Codes ..., 36
CHSPAC . . . e 33
CHTYP (CHaracter TYPe)......................... 36
CHZERD. e 33
Class Err ... 43
Class FIecsoovieii i 42
Class FOrt.......oouuii 43
Class LiStovvv e 43
Classes of I/O i 41
CLOSEF (CLOSE Files)coooeiieeiii.. 49
COGOTO. . ..t e e 33
Comments.ovuinieiieeiin 9, 22, 42
Comparison of Strings 39
Concatenation of Strings...................... 35, 36
CONDITIONAL 14
Context Errors 27
Continuation Lines........................... 25, 42
control phrase 6
Control Structures............., 5,11
Control/in 41
Control/out 41
Copying Stringsoouiuinnneeeeeenn.. 37
CPASS directive ... 22
CPYSTR (CoPY STRing)cooi.... 37
CPYSUB (CoPY SUBString) «....vvvvvuveennnne... 37

D

Decision Structurescooiin.... 11
‘descrip.mms’. ... 51
Devicesand Files................................ 41
DFAKDO directive, 22
Directives, Translator 22
] 16, 22
DO Loops and Internal Procedures................. 25
Documentation.................................. 53

55
E
ELSE . . 13
Errors. 27, 42, 43
Exiting ... 49
Extended Range DO Loops.coo ... 25
F
FAKE . . 33
FAKEDOttt e e 16
FAKEDO directiveoviiine ... 22
File Closing 49
File Input.........oooo 48
File Names............ 29
File Opening i 45
File OQutputoovi 48
Files and Devices................................ 41
Files in the Standard Version..................... 51
FIN 7
flclean.Comttt 51
Flecs Command 29
Flecs Implementation 31
Flecs Input File 42
Flecs Statements 11
Flecs. .t o 51
flecs. . f1x o 51
‘flecs.texinfo’ 51
flecs.txXt o 51
Flecs/In. .o 41
‘flecsbsp.f’ i 52
£1ecsdoC’ ..ot 52
‘flecsdoc.dvi’ 52
‘flecsdoC.pS’ ...t 52
‘flecsdoc.texinfo’. 52
“flecsp.f ... 52
‘flecsubs.f ... 52
‘flecsubs.f1x 52
Flifix. £l . 52
FLSTOP (FLecs STOP) 49
FORMAT statements............................... 25
Fort/out ... 41
Fortran Compatibility......................... ... 23
Fortran Features............. 5
Fortran Line Numbers......................... 9, 25
Fortran Output 42, 43
Fortran Statement Numbers...................... 34
G
GET (GET input) ..., 48

H

HASH (HASH function) 38
Hash Table............ 34

56

I

I/OClassesoooviiiiii i 41
I/OInterface...............o i, 41
I/O Subroutines............. 31, 44
TF 11
Implementation of Flecs.......................... 31
Indentation........... 8
Input from Files.........o .. 48
Installation 51, 52
Integer Variable Names 25
Internal Procedure Table......................... 34
Internal Procedures.............................. 20
Internal Procedures and DO Loops................. 25

K

keyword. 6

L

Labels for Fortran Statements 34
Line Numbers........................... 6, 9, 25, 43
List/out ... 41
Listing 8, 42, 43
LONG . .ot 33
Loop Structures 15
LWIDTH ...ttt e e e 33

M

‘makefile.gen’............ i 52
MAKEST (MAKE STring)ovvvevieaneeannn 38
MAXSTK . .o e 33
Modificationsoiiiiiiiinnna.. 51, 53

N

Nesting 7
Number Conversion 35, 38
Numbers for Fortran Statements.................. 34
O

OPENF (OPEN Files) ..., 45
Organization of the Translator.................... 31
OTHERWISEt e 14, 15
OUTCNT . . .ot e e e e e e e e e 34
Output to Files............. i 48

P

Parenthesized Expressions........................ 26
‘pflecs. £’ . 52
Portability 5
PRIME. ... 34
Procedure Parameters............................ 22
Procedure Tables 34

FLECS — A Structured Fortran Preprocessor

Process of Translation............................. 5
PUT (PUT out strings)c.oooouo.... 48
PUTNUM (PUT NUMDber)o 38

R

‘readme.txXt’ 52
Recursion............. 22
REPEAT UNTIL.ot ettt 20
REPEAT WHILE. i, 18
Reserved Words 26

S

SAFETY . 34
SCOPE - vttt et et e e e e 6
SEEDNO. . .ottt 34
SELECT . ..o 15
Semantic Errors o 27
SHORTo 33
Source Preparation 29
specification. i 6
Stack Overflow i 34
Standard Version, 51
Statement Numbers.............................. 34
Stopping Execution 49
STREQ (STRing EQuality)cooin. 39
String Case Conversion.c.cooeeeun... 40
String Comparison. 39
String Concatenation 35, 36
String Copying ... 37
String Processing Conventions 32
STRLT (STRing Less Than) 39
Structured Statement 6
Structures for Control............................. 5
STRUP (STRing UPpercase)ccouuueeennn.. 40
Substring Concatenation 36
Substring Copying 37
Syntax Errors 27
System Structure 31

T

Testing the Translator 32
0 20
TRANSLATE directive...............ccoviriena... 23
Translation Parameters 32
Translation Process............................... 5
Translator Directives............................. 22
Translator Operation 29
Translator Parameters 32
TRIM (TRIM string of blanks)..................... 40
Type Codes for Characters 36

U

Index

USage . .o v et 29
Useof Fortran.............. 5
V

Variable Names. 25
Varying Length Character Strings................. 32

o7

WHEN. . .ELSE e 13
WHILE. ... e 16
Whitespace 25

Writing to Files 48

o8

FLECS — A Structured Fortran Preprocessor

