FCPP(1) FCPP(1)

NAME
fcpp — Fortran C Preprocessor

SYNOPSIS
fcpp [-Dnamég=valud] [-Unam@ [-F] [-C] [-Idirectory] [-V] [input-file[output-fild]

DESCRIPTION
fcpp is a modified C preprocessor designed to be usedarak code. It is a modified versionafcp, the
C Compatible Compiler Preprocessor written by Paul Rubin angrigipted by the Free Softwareénda-
tion. Thispreprocessor provides all the functionality of the old style C preprocessor as #elif asd the
macros; _LINE , BIE_, FILE ,and _TIME__. In addition, it contains additional features for
Fortran code, and it has been ported to the VAX/VMS operating system in addition to other Unix platforms.

Command line options
-F The input file is Brtran. The preprocessor variable, LAN-
GUAGE_FORTRAN, is automatically defined.

-Dnamég=valud The preprocessoraviable,name is st tovalueif valueis specified,
and is set to 1 if nealueis specified.

-Uname The preprocessor variableame is undefined.

-C C comments are copied to the output file.

-V The version number d€pp is written to standard error.

input-file The file to be processed. If specified asyphen ("-") or if omitted,

then standard input is used.
output-file The output of processing. If specified as a hyphen ("-") or if omitted,
then standard output is used.

Directives
The following directves ae processed: #define, #undef, #include, #ifdef, #if, #ifndef, #elif, #else, #endif,
#pragma, and #line. Their meaning is the same epprexcept for the special processing done in VMS for
#include.

Differences from cccp
fcpp has been modified as follows:

1. A Fortran mode switch-F) has been added that controls the use of Fortran features.
2. Outputiines are continued if tlyeexceed 72 characters when Fortran mode is on.
3. A number of changes ta been made to poftpp to VMS. In particularthe 1/O infcpp has been

rewritten to work line by line rather than with single readhd write’s. In version 2.4 of AXC,
this was a necessity because the /O systdiadf when large (>32K) read’and write’s were
attempted.

Commanaption processing is case insengtn VMS.

OnVAX/VMS, the first "/" in an included file name is a@nted to ":" to allav the use of logical
names.

OnVAX/IVMS, SYSSLIBRARY: is arched for included files specified with angle bessk'<>".

In Fortran mode, double quotes (") are ignored. Substitutions within double quotes aredallo
However, dngle quotes are interpreted as string delimiters witldrtiren statements, and no sub-
stitutions are allowed in the string. Single quotes are not specially processed withém Eom-
ments, but there is a difficult bug which peetsfcpp from identifying a comment in the first line

of a file. Therefore, an unmatched single quote in the first line of a file which is a comment will
result in no preprocessing.

Macromolecular Modeling Local 1

FCPP(1) FCPP(1)

8. TheVAX version of the program has the preprocessorable,vax defined. TheVMS version
hasvax, VAX, vms and VMSdefined. ThdJnix version hasinix defined.
9. If an error occurs handling an #include direetin VMS, the directe is written to the output file.
This gives the VAX C compiler another crack at it.
10. OnVMS, no #line directie is written out after an #include direeti
DIAGNOSTICS
Self-explanatory (hopefully!). Syntax errorsvgithe line number for the bad line.
SEE ALSO
cpp(l), cc(l).
FILES
CAVEATS
Don't put a single quote in a comment found in the first line of Fortran file.
ORIGIN

Paul Rubin and Free Software Foundation.
Modifications by Robert E. Bruccoleri
Bristol-Myers Squibb Pharmaceutical Research Institute

COPYLEFT
Copyright (C) 1986, Free Software Foundation, Inc.
See the beginning of the source file, cccp.c, for the full text of the License Agreemeanmgase and
copying of this program.

Macromolecular Modeling Local 2

MKPROTO(1) MKPROTO(1)

NAME
mkproto — Male prototypes for functions
SYNOPSIS
mkproto
[-n] [-S] [-p] [-E] [-1 name€] [-l int] [file] ...
DESCRIPTION

BUGS

mkproto takes as input one or more C source code files, and produces as output (on the standard output
stream) a list of function prototypes (a la ANSI) for tiéeenal functions defined in thevgnh source files.
This output, redirected to a file, is suitable#dmc| ude’ing in a C source file.

The function definitions in the original source may be either "old-style" (in which case appropriate proto-
types are generated for the functions) or "new-style" (in which the definition includes a prototype already).

A -n option causes the line number where each function was defined to be prepended to the prototype dec-
laration as a comment.

A -soption causes prototypes to be generated for functions declard "static" as well as extern functions.

A -p option causes the prototypes emitted to be only readable by ANSI compilers. Nottmegtisototypes
are "macro-ized" so that compilers withSTDC__ not defined dort’see them.

A -E option causes all preprocessor statements in the to be emitted to the prototype file. If you use this
option, it is important that all your header files be idempotent, nathalythg can be reincluded multiple
times with the same effect as a single inclusion.

The -i name option is used to makthe emitted prototype file idempotent. Tiemeis used to condition-
ally compile the prototype file as a whole, and therefore, the prototypes will only be seen once by the com-
piler. Try this option out to see the effect.

The -l int option controls the width of lines output bykproto. After each variable in a functions proto-
type is output,mkproto checks to see if the current line length exceeds the interadble,
br eakaf t er. If it does, then a mdine followed by appropriate indentation is output. Thus, thisable
doesnt specify a hard line width, it specifies an approximate right margin. Only yp@s#lues are permit-
ted for this option. A value of 1 results in each variable having its own line.

If files are specified on the command line, then a comment specifying the file of origin is emitted before the
prototypes constructed from that file. If no files aneegj then no comments are emitted and the C source
code is taken from the standard input stream.

1) mkproto is easily confused by complicated declarations, such as
int ((*signal)())() {
or

struct foo { int x, y; } foofunc() {

2) Float types are not properly promoted in old style definitions, i.e.
int test(f) float f; {

should (because of the default typeesion rules) hee prototype
int test(double f);

rather than the incorrect

int test(float f);

Macromolecular Modeling Local 1

MKPROTO(1) MKPROTO(1)

generated bynkproto.

3) Some programs may need to be run through the preprocessor before being runntkmoegb. The-n
option is unlikely to work as desired on the output of a preprocessor.

4)t ypedef 'd types arert'correctly promoted, e.g. for

typedef schar char; int foo(x) schar x;
mkproto incorrectly generates the prototypent foo(schar x) rather than the (correct)nt
foo(int x).
5) Functions named "inline" with no explicit type qualifiers are not recognized.

SEE ALSO
cc(1), lint(1)

AUTHORS
Eric R. Smith.
Robert E. Bruccoleri.

NOTE
There is no warranty for this program (as noted &bpit's guaranteed to break sometimes)says!).

mkproto is in the public domain.

Macromolecular Modeling Local

WRAPGEN(1) WRAPGEN(1)

NAME
wrapgen — Wrapper generator for Fortran C interlanguage calls
SYNOPSIS
wrapgen
[-c] [-f] [-m] [-i input-filg [-0 output-fild [-h header-fil§
DESCRIPTION

wrapgen generates wrappers for C to Fortran and Fortran to C interlanguage Tadlse wrappers are
designed to hide the machine dependencies inherent in interlanguage calls. Programvsapsjeg can
then use C and Fortran in a portablBywwrapgentakes care of corerting character string parameters and
call by value parameters.

Command line options

-C Write wrappers for procedures written in C
-f Write wrappers for subprograms written in Fortran
-m Writes multiple files. A separate file gianing with the prefixwr_ is

written for every wrapper This feature is intended for building object
libraries where each wrapper is isolated into w& anodule. When this
option is specified, the output-fileoption is ignored.

-h header-file Specifies the header file which must be included inio sanrce file
which calls the wrapped functions. This header file is writtemizp-
gen See belav for more information.

-i input-file Specifies the input file of prototypes which describe the functions for
which wrappers are to be generated. Defaults to standard input.

-o output-file Specifies the file where the wrapper procedures are written. This is a C
language source file that must be compiled and linked into the program
using the wrappers.

Usage
wrapgen generates wrappers for eitheorffan or C procedures, depending on the choice ofdloe -f
option. Ineither case, the specifications for the wrappers in done using the same syntax, namely that of C
function prototypes. The syntax for the prototypes is as follows:

prototype ::= [data-type] {function-name} (arglist) ;

arglist ::= <empty> | void | arglistl
arglistl := ag|ag, aglistl

arg = data-typd?*] variable-name
data-type ::= int | float | double | char | void |

F77_INTEGER | F77_REAL | F77_DOUBLE |
F77_LOGICAL | F77_POINTER

Any number of wrappers may be specified in the input file.

There are three different types afriables; charactesize, and scalarCharacter variables are used to pass
character strings, andvedys specified as pointers tbar. Size variable are integers or F77_INTEGER’
not declared as pointers, whichveahe same variable name as the corresponding character skiegt e
that "_sizé' is appended to the end. Sizanables are described in more detail bel&calar variables are
integers, logicals, floats, double precision floats, and Fortran pointersam pointers are variables in

Macromolecular Modeling Local 1

WRAPGEN(1) WRAPGEN(1)

Fortran that are intended to hold addresses used in C code. All can be passed by pointers, and all scalar
variables except double precision floats can be passed by value.

The return type of gnprototype should be limited teoid, integers, logicals, single precision floats, and
integers big enough to hold pointers (F77_POINTER). Double precision floats ficaldib return, and
wrapgen does not handle them.

A number of preprocessor variables must be defined for the wrappersrito See thdmplementation
section bela for more information.

Wrappers for functions defined in Fortran
The ley ransformation thatwvrapgen provides is the corersion of character strings in C usage to that
expected by Fortran subroutines. lorffan, all character strings V@ a &ze associated with them. The
wrappers generated lwyrapgen can either calculate this size usistglenor it can be provided by the pro-
grammerwrapgen will choose based on whether sizevariable exists for the character string as specified
in the prototype. Such sizeawables are integers passed by value whicke Hasize' appended to the char
acter string variable nameYou must decide when writing the procedure which way a string is being
passed, and then this form must used throughout the code.

wrapgen will also transform parameters passed bjue into parameters passed by reference. The wrap-
per's copy of the parameter will be used to provide storagee presence or absence of an asterisk ("*")
before the variable name in the prototype signifies that the C code expects a parameter to be passed by
value.

The header file produced by tHeoption contains #define statements which rename the functions to their
wrapper form (the name specified in the prototype plwgrdp’), and thg aso contain a function proto-
type for this wrapper so that no parameter promotions will be done. This is important for catirem F
subroutines which expect float parameters and for which the C call uses a call by value.

Procedure for Fortran defined subprograms
For each subroutine which is called from C, you must do the following:

1) Define a function prototype in C which specifiesvtyour C code will call the subroutine. The order of
character strings and other parameters must matchotti@rfr code. You hee the option of specifying size
variables for each of the character strings; these may be specifieg position, but must be consistently
used. Thenames must correspond to the character strings with the additiosin# 'to the name. If you
omit a size variable for a character string, then the wrapper will use strlen to gleiea inthe Fortran
code, simply declare these variables as CHARACTER.

2) You can also declarst, float, F77_REAL F77_INTEGERF77_POINTERand F77_LOGICALwithout
a pointer (call by value), and the wrapper will generate a pointer for you.

3) You must include the header that is produced by wrapgeryifilarof C code where gnFortran sub-
routine is called.

4) You must define a "config.h" file for use by the wrapper code which defines the preproacsstess
listed under Implementation”. Thewrapper code must be compiled and linked with your programs.

Example wrapper specification readvessapgen:

void gtrmni (char *comlyn, int comlyn_size, int *comlenp,
char *keyst, int *valp, int def);

gtrmniis a subprogram which will search the stringmlyn for a keyword, keyst, and if found, will corvert
the following word into an integer and put the result ift@lp. In addition, both the &word and the fol-
lowing word will be deleted froneomlyn If not found, it fill copy definto *valp. A sample call to gtrmni
would look like:

#define MXCMSZ 2000

char comlyn[mxcmsz];

int comlen,unit;
gtrmni(comlyn,MXCMSZ,&comlen,"UNIT",&unit,-1);

Macromolecular Modeling Local 2

WRAPGEN(1) WRAPGEN(1)

Sincecomlynis modified, we must va oth a maximum length (the size variable in the declaratiom-
lyn_sizé and a current lengtlfcomlenp Since the lkeyword, *keyst, is readonly and would wer contain a
null characterthe use of strlen to get the length would mabnse. Thus, no size variable appears in the
prototype. Allother variables are declared as integers. Somrelenand unit can be changed, there
passed by referencedefis passed byalue since it is a constant. The subroutine call itself is declenied
because no value is returned.

Wrappers for functions defined in C
Again, the ley transformation is for character strings. wiwer, here Fortran provides all the necessary
information already; it is up to the programmer to decide if the C functions needs it. The pointer to the
character string is aiys provided, but the size is pided only if a size variable is included in the proto-

type.
The header file produced here contains #define statements which will renaroeridue éall to their _wrap

forms. Both upper and lower case namevemsions are done, but wmixtures of upper and lower case
characters in a name are not supporféall must use a C preprocessordifcpp with your Fortran code.

Procedure for C defined procedures
To use C functions from Fortran, you must do the following

1) Define C function prototypes that specify the parameters for your C function. All character strings and
other parameters must specified in the same order in the definition and in the Fortran call.

2) Decide for which character strings you will require the actual lengths as provided by Fortran. Declare
these as size variables, and place them whegou like, although right after the character is recom-
mended.

3) Decide on ancall by value variables. Anint, float F77_INTEGERF77_REAL F77_LOGICALor
F77_POINTERvariable may be declared in the prototype without a pointer indication, and these will be
dereferenced before passing to your C function.

4) Include the header file producedvssapgenin all Fortran code which calls these C functions. Since the
header file will increase the size of the subprogram name in a call, watch out that the limit of 19 continua-
tion lines is not exceeded.

5) You must define a "config.h" file for use by the wrapper code which defines the preproeessbess
listed under "Implementation". The wrapper code must be compiled and linked with your programs.

Example wrapper specification readvssapgen:
int get_vm (int len, char *callee, int callee_size)

get_vm is a subroutine that will return the address of newly allocated memory of tegthf the call
fails, it will issue an error message containing the string pointed toabige which has a length of
callee_sizeThe Fortran call to this routine might look like

INTEGER SRCE,GET_VM,LEN
SFACE = GET_VM(LEN,"ALLHP")

Thelenargument will be dereferenced when the C function is called.

Implementation
wrapgen is implemented usingaccandlex for parsing the prototypesThe wrappers are generated using
a large number of preprocessor statements so thgtdie be conditionally compiled for each machine
type. A number of preprocessor variables are examined to create the wrappers:

APPEND_FOR Defined if Fortran entry points ti& an underscore appended to their
names.
vms Definedor vms systems

Macromolecular Modeling Local 3

WRAPGEN(1) WRAPGEN(1)

ST_BY_EXTRA_LEN Defined for systems which pass character string lengths by addiag e
parameters to the end of a subroutine call.

unicos Definedor Cray Unicos

PROTOTYPES Defined for systems where the C compilers can handle prototyjes.
use of wrappers without this variable being defined has not been tested.

Note that all of these variables MUST be properly defined; defining vms and APPEND_FOR will yield
erroneous results.

DIAGNOSTICS
Self-explanatory (hopefully!). Syntax errorsvgi the line number for the erroneous prototypat, the mes-
sages only localize to the nearest semicolon.

SEE ALSO
Congen, fcpp.

FILES

CAVEATS
Only support for VAX/VMS, Iris 4D, Covex, IBM RS/6000, HP 700 series workstations running HPUX,
and Crays running Unicos are currently implemented. DECstations and Sun Sparc based machines should
work with the current preprocessor variables.

When working withwrapgen, keep in mind that it performs twdifferent functions. The fact that the proto-
types are written using C is very confusing.

AUTHOR
Robert E. Bruccoleri
Bristol-Myers Squibb Pharmaceutical Research Institute
PO. Box 4000
Princeton, NJ 08543-4000 USA
bruc@bms.com

BUGS/COMMENTS
If you use this program, | would really appreciate your comments about it, bothvg@aaii neetive.
Please send me mail.

COPYRIGHT
CONGEN™ Conformational Search and Molecular Modeling System

Copyright © 1987-1988 Robert E. Bruccoleri
Copyright (c) 1990-1997 Bristol-Myers Squibb Company

This software and related documentation is being provided by the copyright holders under wiadgollo
license. Byobtaining, using and/or cgjmg this software, you agree that yowéaead, understood, and
will comply with the following terms and conditions:

Permission to use, cgpmodify, and distribute this software and its documentation for purpose and
without fee is hereby granted, pided that the abhe@ @pyright notice and this permission notice anarw
ranty disclaimer appear in all copies.

ROBERT E. BRUCCOLERI AND BRISTOL-MYERS SQIBB COMPANY DISCLAIMS, AND THE
USER WAIVES, ALL REPRESENATIONS AND WARRANTIES, EXPRESS OR IMPLIED, WITH
REGARD TO THIS SOFTWARE AND ITS RELATED DOCUMENATION, INCLUDING WITHOUT
LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A RR-
TICULAR USE OR PURPOSEROBERT E. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COM-
PANY MAKES NO REPRESENATION OR WARRANTY, EXPRESS OR IMPLIED, AS O
WHETHER THE USE OF THIS SOFTWARE AND ITS RELATED DOCUMENMON INFRINGES
ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERY RIGHT OF ANY OTHER
PARTY. IN NO EVENT SHALL ROBERI E. BRUCCOLERI OR BRISTOL-MYERS SQIBB

Macromolecular Modeling Local 4

WRAPGEN(1) WRAPGEN(1)

COMPANY BE LIABLE FOR ANY SPECIAL, DIRECT INDIRECT, INCIDENTAL, PUNITIVE, OR
CONSEQJENTIAL DAMAGES, OR ANY OTHER BMAGES OF ANY MTURE WHATSOEVER,
THAT MAY BE INCURRED BY THE USER OR ANY OTHERARTY ARISING OUT OF OR IN
CONNECTION WITH ANY USE OR PERFORMANCE OF THIS SOFRRE OR ANY USE OF ANY
DATA OR RESULTS GENERATED BY THE SOFTWARE, INCLUDING WITHOUT LIMIATION
LOSS OF ATA AND LOST PROFITS OR REVENUES, WHETHER OR NM®R. BRJCCOLERI
AND BRISTOL-MYERS SQUIBB COMPANY HAVE BEEN ADVISED OF THE POSSIBILITY OF
DAMAGES, AND USER HEREBY WAIVES, RELEASES, AND FOREVER DISCLAIMS ALIAMI-
AGES, CLAIMS, AND CAUSES OF ACTION IT MX HAVE AGAINST DR. BRUCCOLERI AND
BRISTOL-MYERS SQUIBB COMPANY WITH RESPECT @ ANY LOSSES, AMAGES, COSTS,
EXPENSES, AND LIABILITIES OF ANY MTURE THAT MAY BE INCURRED BY IT ARISING
OUT OF OR IN CONNECTION WITH USER’S USE OF THE SOFTWARE AND ITS RELATED DOC-
UMENTATION. USERSHALL BE SOLELY RESPONSIBLE FOR ALL LOSSES,AMAGES, COSTS,
EXPENSES, AND LIABILITIES OF ANY MTURE INCURRED BY USER RESULTING FROM OR IN
CONNECTION WITH USER’S USE OF THE SOFTWARE AND ITS RELATED DOCUMENTON.
THE USER UNDERSTANDS AND ACCEPTS THE ABOVE LIMATIONS ON DAMAGES AND
REMEDIES AS A CONDITION OF OBTAINING USE OF THE SOFTWARE AND RETED DOCU-
MENTATION WITHOUT CHARGE.

Macromolecular Modeling Local 5

FSPLIT(1) Macromolecular (BSD 4.2) FSPDIT(1

NAME
fsplit — Split a multi-routine Fortran file into individual files

SYNOPSIS
fsplit [-e efile] [files]

DESCRIPTION
Fsplit takes as input either a file or standard input containing Fortran source code. It attempts to split the
input into separate routine files of the formame.fwherenameis the name of the program unit (e.g. func-
tion, subroutine, block data or program). The name for unnamed block data subprograms has the form
blkdtaNNN.fwhere NNN is three digits and a file of this name does not already exist. For unnamed main
programs the name has the formainNNN.f If there is an error in classifying a program unit, om&ame.f
already exists, the program unit will be put in a file of the farzNNN.fvherezzzNNN.floes not already
exist.

-e efiles

Normally each subprogram unit is split into a separate file. Whendlwption is used, only the specified
subprogram units are split into separate files. E.g.:

fsplit -e readit -e doit prog.f
will split readit and doit into separate files.

DIAGNOSTICS
If names specified via the option are not found, a diagnostic is written to standard error.

HISTORY
Fsplit appeared in 4.2 BSD.

AUTHORS
Asa Romberger and Jerry Berkman

BUGS
Fsplit assumes the subprogram name is on the first noncomment line of the subprogram unit. Nonstandard
source formats may confussplit.

It is hard to use-e for unnamed main programs and block data subprograms since you must predict the
created file name.

Page 1 October 15, 1997

NDIFFPOST(1) Macromolecular Modeling (Local) NDIFRPOST(1)

NAME
ndiffpost— Numerical differences postprocessor

SYNOPSIS
ndiffpost
[-cutoff=real] [-angle=real] [-sort] [-verbosq [-ignore=file] [input-file]

DESCRIPTION
ndiffpost is a postprocessing filter for thaiff program. It goes through all of the differ-
ence blocks and reports the maximum absolute or relative differences found for each
number in each block. The blocks can be sorted in descending order (usingotthe
switch). It is very handy for comparing the results of a program after a small change is
made to a numerical calculation.

The program expects theput-fileto be the output of an ordinagiff command. Do not
use any other options (such &3 with the diff program.

An example usage would be

diff file1 file2 | ndiffpost -cutoff=1.0e-5 -sort

Command line options

-cutoff=real = Normally, if a block has no numerical differences, it is not
printed, but any numerical differences will result in the
block being printed. If this parameter is specified, then any
block with maximum differences greater than thetoff
will be printed. It is useful for reducing the clutter in an
output file. If you want all blocks printed, specify a nega-
tive cutoff.

-angle=real If this option is specifiedndiffpost will attempt to identify
differences in angles (measured in degrees) which bracket
180.0 degrees. For example, if one number is -179.99 and
the other is 179.99, then this option can be used to ignore
such differences. Theeal number specified as the operand
is the cutoff for difference test.

-sort Blocks will be printed in reverse sorted order of the max-
imum difference found. This is helpful for scanning big
files of differences.

-verbose Debugging information will be displayed.

-ignore=file If this option is specified, each line in tHige will be used
as a Perl regular expression which is matched against each
difference line. If the regular expression matches, the
difference line will be ignored. If all difference lines in a
block are ignored, then the block itself will also be ignored.
This capability is very useful for screening out differences
which result from execution time variation or file names
changes.

SEE ALSO
perl(1).
IMPLEMENTATION
The script is written in Perl, which was translated from a earlier version written in Awk.

Page 1 September 30, 1998

NDIFFPOST(1) Macromolecular Modeling (Local) NDIFRPOST(1)

COPYRIGHT
CONGEN(tm) Conformational Search and Molecular Modeling System

Copyright (c) 1987-1988 Robert E. Bruccoleri
Copyright (c) 1990-1997 Bristol-Myers Squibb Company

This software and related documentation is being provided by the copyright holders
under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
and this permission notice and warranty disclaimer appear in all copies.

ROBERT E. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COMPANY DIS-
CLAIMS, AND THE USER WAIVES, ALL REPRESENTATIONS AND WARRAN-
TIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE AND ITS
RELATED DOCUMENTATION, INCLUDING WITHOUT LIMITATION ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR USE OR PURPOSE. ROBERT E. BRUCCOLERI AND BRISTOL-MYERS
SQUIBB COMPANY MAKES NO REPRESENTATION OR WARRANTY, EXPRESS
OR IMPLIED, AS TO WHETHER THE USE OF THIS SOFTWARE AND ITS
RELATED DOCUMENTATION INFRINGES ANY PATENT, COPYRIGHT, OR
OTHER INTELLECTUAL PROPERTY RIGHT OF ANY OTHER PARTY. IN NO
EVENT SHALL ROBERT E. BRUCCOLERI OR BRISTOL-MYERS SQUIBB COM-
PANY BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, INCIDENTAL, PUNI-
TIVE, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER DAMAGES OF ANY
NATURE WHATSOEVER, THAT MAY BE INCURRED BY THE USER OR ANY
OTHER PARTY ARISING OUT OF OR IN CONNECTION WITH ANY USE OR
PERFORMANCE OF THIS SOFTWARE OR ANY USE OF ANY DATA OR
RESULTS GENERATED BY THE SOFTWARE, INCLUDING WITHOUT LIMITA-
TION LOSS OF DATA AND LOST PROFITS OR REVENUES, WHETHER OR NOT
DR. BRUCCOLERI AND BRISTOL-MYERS SQUIBB COMPANY HAVE BEEN
ADVISED OF THE POSSIBILITY OF DAMAGES, AND USER HEREBY WAIVES,
RELEASES, AND FOREVER DISCLAIMS ALL DAMAGES, CLAIMS, AND
CAUSES OF ACTION IT MAY HAVE AGAINST DR. BRUCCOLERI AND
BRISTOL-MYERS SQUIBB COMPANY WITH RESPECT TO ANY LOSSES, DAM-
AGES, COSTS, EXPENSES, AND LIABILITIES OF ANY NATURE THAT MAY BE
INCURRED BY IT ARISING OUT OF OR IN CONNECTION WITH USER’S USE OF
THE SOFTWARE AND ITS RELATED DOCUMENTATION. USER SHALL BE
SOLELY RESPONSIBLE FOR ALL LOSSES, DAMAGES, COSTS, EXPENSES,
AND LIABILITIES OF ANY NATURE INCURRED BY USER RESULTING FROM
OR IN CONNECTION WITH USER'S USE OF THE SOFTWARE AND ITS
RELATED DOCUMENTATION. THE USER UNDERSTANDS AND ACCEPTS THE
ABOVE LIMITATIONS ON DAMAGES AND REMEDIES AS A CONDITION OF
OBTAINING USE OF THE SOFTWARE AND RELATED DOCUMENTATION
WITHOUT CHARGE.

September 30, 1998 Page 2

RS6KFIX(1) Macromolecular Modeling (Local) 69X (1)

NAME
rs6kfix — Fixes output from IBM RS6000 Fortran formatted 1/0.

SYNOPSIS
rs6kfix [input-file]

DESCRIPTION
rs6kfix is a simple filter which changes output formats generated by the IBM RS6000
Fortran I/O library. Formatted output statements from this machine are unusual in that
the leading zero in fractions whose magnitude is smaller than 1 is omitted. This filter puts
that zero back. For example124is converted t60.124 This program is very handy
when comparing results computed on an RS6000 with other machines.

An example usage would be

rsekfix filel| diff - file2 | ndiffpost cutoff=1.0e-5

SEE ALSO
ndiffpost(1)

ORIGIN
Robert E. Bruccoleri
Bristol-Myers SquiblPharmaceuticaResearch Institute

Page 1 October 15, 1997

AVGTABLE(1) Macromolecular Modeling (Local) VBTABLE(1)

NAME
avgtable- Average CONGEN tables.

SYNOPSIS
avgtable

[-ave [-sd] [files ..]
DESCRIPTION

avgtable averages the data in multiple CONGEN tables, as generated by the WRITE
unit option, in theBUILD TABLE command, and writes the result into a new table.

An example usage would be

avgtable -ave table.out.1 table.out.2 table.out.3

Command line options
-ave Specify calculation of averages. This is the default.
-sd Specify calculation of standard deviations.

IMPLEMENTATION
The script is written in Perl.

ORIGIN
Robert E. Bruccoleri
Bristol-Myers SquiblPharmaceuticdResearch Institute

Page 1 October 15, 1997

